--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification_2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.51875 --- # emotion_classification_2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3274 - Accuracy: 0.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 1.9337 | 0.3563 | | No log | 2.0 | 40 | 1.7116 | 0.3375 | | No log | 3.0 | 60 | 1.5755 | 0.4562 | | No log | 4.0 | 80 | 1.4939 | 0.45 | | No log | 5.0 | 100 | 1.4377 | 0.5062 | | No log | 6.0 | 120 | 1.4363 | 0.4562 | | No log | 7.0 | 140 | 1.3615 | 0.5125 | | No log | 8.0 | 160 | 1.3021 | 0.5375 | | No log | 9.0 | 180 | 1.3307 | 0.525 | | No log | 10.0 | 200 | 1.3085 | 0.4938 | | No log | 11.0 | 220 | 1.2798 | 0.5813 | | No log | 12.0 | 240 | 1.2707 | 0.525 | | No log | 13.0 | 260 | 1.2339 | 0.55 | | No log | 14.0 | 280 | 1.3053 | 0.5437 | | No log | 15.0 | 300 | 1.3038 | 0.4938 | | No log | 16.0 | 320 | 1.3088 | 0.5375 | | No log | 17.0 | 340 | 1.3336 | 0.5312 | | No log | 18.0 | 360 | 1.3053 | 0.5 | | No log | 19.0 | 380 | 1.2206 | 0.5687 | | No log | 20.0 | 400 | 1.2598 | 0.5312 | | No log | 21.0 | 420 | 1.3332 | 0.5125 | | No log | 22.0 | 440 | 1.3388 | 0.5312 | | No log | 23.0 | 460 | 1.3129 | 0.5563 | | No log | 24.0 | 480 | 1.3632 | 0.5062 | | 0.9153 | 25.0 | 500 | 1.4166 | 0.4688 | | 0.9153 | 26.0 | 520 | 1.4094 | 0.5 | | 0.9153 | 27.0 | 540 | 1.4294 | 0.475 | | 0.9153 | 28.0 | 560 | 1.4937 | 0.475 | | 0.9153 | 29.0 | 580 | 1.3897 | 0.4938 | | 0.9153 | 30.0 | 600 | 1.4565 | 0.475 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3