--- license: apache-2.0 base_model: raffel-22/emotion_classification_2 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification_2_continue results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.725 --- # emotion_classification_2_continue This model is a fine-tuned version of [raffel-22/emotion_classification_2](https://huggingface.co/raffel-22/emotion_classification_2) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8978 - Accuracy: 0.725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 0.9714 | 0.7063 | | No log | 2.0 | 40 | 0.9432 | 0.7188 | | No log | 3.0 | 60 | 0.9633 | 0.7 | | No log | 4.0 | 80 | 0.9322 | 0.7375 | | No log | 5.0 | 100 | 0.8530 | 0.7063 | | No log | 6.0 | 120 | 0.9063 | 0.7063 | | No log | 7.0 | 140 | 0.8451 | 0.7125 | | No log | 8.0 | 160 | 0.9672 | 0.6375 | | No log | 9.0 | 180 | 0.9036 | 0.6937 | | No log | 10.0 | 200 | 0.9261 | 0.6562 | | No log | 11.0 | 220 | 0.8963 | 0.6937 | | No log | 12.0 | 240 | 0.8852 | 0.7188 | | No log | 13.0 | 260 | 0.8728 | 0.7063 | | No log | 14.0 | 280 | 0.9559 | 0.6875 | | No log | 15.0 | 300 | 0.9352 | 0.65 | | No log | 16.0 | 320 | 0.8638 | 0.7 | | No log | 17.0 | 340 | 0.9156 | 0.7 | | No log | 18.0 | 360 | 1.0299 | 0.6687 | | No log | 19.0 | 380 | 0.8983 | 0.675 | | No log | 20.0 | 400 | 0.8858 | 0.7063 | | No log | 21.0 | 420 | 0.9699 | 0.6937 | | No log | 22.0 | 440 | 1.0603 | 0.625 | | No log | 23.0 | 460 | 1.0404 | 0.6312 | | No log | 24.0 | 480 | 0.8838 | 0.6937 | | 0.4269 | 25.0 | 500 | 0.9280 | 0.6937 | | 0.4269 | 26.0 | 520 | 0.9456 | 0.6937 | | 0.4269 | 27.0 | 540 | 0.9640 | 0.6937 | | 0.4269 | 28.0 | 560 | 0.9865 | 0.6937 | | 0.4269 | 29.0 | 580 | 0.8900 | 0.7188 | | 0.4269 | 30.0 | 600 | 0.9408 | 0.7063 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3