Commit
·
67c4023
1
Parent(s):
ab35704
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xlsr-hindi-demo-colab_2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xlsr-hindi-demo-colab_2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 3.8793
|
20 |
+
- Wer: 1.1357
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 16
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 20
|
48 |
+
- num_epochs: 50
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 22.381 | 1.11 | 20 | 22.1964 | 1.0 |
|
56 |
+
| 7.6212 | 2.22 | 40 | 4.0591 | 1.0 |
|
57 |
+
| 3.6951 | 3.32 | 60 | 3.6782 | 1.0 |
|
58 |
+
| 3.5574 | 4.43 | 80 | 3.6776 | 1.0 |
|
59 |
+
| 3.5374 | 5.54 | 100 | 3.5649 | 1.0 |
|
60 |
+
| 3.5512 | 6.65 | 120 | 3.5266 | 1.0 |
|
61 |
+
| 3.5075 | 7.76 | 140 | 3.6860 | 1.0 |
|
62 |
+
| 3.5097 | 8.86 | 160 | 3.4941 | 1.0 |
|
63 |
+
| 3.481 | 9.97 | 180 | 3.4659 | 1.0 |
|
64 |
+
| 3.5623 | 11.11 | 200 | 3.7254 | 1.0 |
|
65 |
+
| 3.4404 | 12.22 | 220 | 3.5225 | 1.0 |
|
66 |
+
| 3.432 | 13.32 | 240 | 3.5706 | 1.0 |
|
67 |
+
| 3.4177 | 14.43 | 260 | 3.3833 | 1.0 |
|
68 |
+
| 3.3735 | 15.54 | 280 | 3.4140 | 1.0 |
|
69 |
+
| 3.31 | 16.65 | 300 | 3.2702 | 1.0 |
|
70 |
+
| 3.2256 | 17.76 | 320 | 3.2405 | 1.0 |
|
71 |
+
| 3.0546 | 18.86 | 340 | 3.1644 | 1.0 |
|
72 |
+
| 2.7233 | 19.97 | 360 | 2.9753 | 1.0 |
|
73 |
+
| 2.2822 | 21.11 | 380 | 3.1119 | 1.1183 |
|
74 |
+
| 1.8027 | 22.22 | 400 | 3.0035 | 1.2378 |
|
75 |
+
| 1.5274 | 23.32 | 420 | 2.8536 | 1.2227 |
|
76 |
+
| 1.2313 | 24.43 | 440 | 2.9544 | 1.0951 |
|
77 |
+
| 1.0956 | 25.54 | 460 | 2.8814 | 1.0661 |
|
78 |
+
| 0.9456 | 26.65 | 480 | 3.1192 | 1.1589 |
|
79 |
+
| 0.7893 | 27.76 | 500 | 3.2919 | 1.1833 |
|
80 |
+
| 0.7256 | 28.86 | 520 | 3.0864 | 1.0951 |
|
81 |
+
| 0.6051 | 29.97 | 540 | 3.5888 | 1.1821 |
|
82 |
+
| 0.6087 | 31.11 | 560 | 3.4579 | 1.1392 |
|
83 |
+
| 0.5529 | 32.22 | 580 | 3.1998 | 1.0708 |
|
84 |
+
| 0.5211 | 33.32 | 600 | 3.4655 | 1.1311 |
|
85 |
+
| 0.4506 | 34.43 | 620 | 3.4338 | 1.1694 |
|
86 |
+
| 0.4101 | 35.54 | 640 | 3.5189 | 1.1450 |
|
87 |
+
| 0.4484 | 36.65 | 660 | 3.6585 | 1.1601 |
|
88 |
+
| 0.4038 | 37.76 | 680 | 3.6314 | 1.1497 |
|
89 |
+
| 0.3539 | 38.86 | 700 | 3.6955 | 1.1485 |
|
90 |
+
| 0.3898 | 39.97 | 720 | 3.5738 | 1.1148 |
|
91 |
+
| 0.35 | 41.11 | 740 | 3.6594 | 1.1195 |
|
92 |
+
| 0.3328 | 42.22 | 760 | 3.6894 | 1.1299 |
|
93 |
+
| 0.3264 | 43.32 | 780 | 3.7290 | 1.1021 |
|
94 |
+
| 0.3364 | 44.43 | 800 | 3.7256 | 1.1543 |
|
95 |
+
| 0.3071 | 45.54 | 820 | 3.8834 | 1.1415 |
|
96 |
+
| 0.3074 | 46.65 | 840 | 3.8077 | 1.1450 |
|
97 |
+
| 0.3064 | 47.76 | 860 | 3.8733 | 1.1346 |
|
98 |
+
| 0.3223 | 48.86 | 880 | 3.8780 | 1.1323 |
|
99 |
+
| 0.275 | 49.97 | 900 | 3.8793 | 1.1357 |
|
100 |
+
|
101 |
+
|
102 |
+
### Framework versions
|
103 |
+
|
104 |
+
- Transformers 4.11.3
|
105 |
+
- Pytorch 1.10.0+cu111
|
106 |
+
- Datasets 1.13.3
|
107 |
+
- Tokenizers 0.10.3
|