rahul-appu
commited on
Commit
•
7511df4
1
Parent(s):
e06aad1
Fast Upload
Browse files- LunarLander.zip +3 -0
- LunarLander/_stable_baselines3_version +1 -0
- LunarLander/data +99 -0
- LunarLander/policy.optimizer.pth +3 -0
- LunarLander/policy.pth +3 -0
- LunarLander/pytorch_variables.pth +3 -0
- LunarLander/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb85007b9e8094c90a40f2c5f5a054b5c7b04b2b3a8dab2489bd0f748df69d0d
|
3 |
+
size 146751
|
LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
LunarLander/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7cc5e3617eb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc5e3617f40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc5e3628040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc5e36280d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7cc5e3628160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7cc5e36281f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc5e3628280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc5e3628310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7cc5e36283a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc5e3628430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc5e36284c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc5e3628550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cc5e3620f40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690092364965885958,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMaNX75cwH685WYZu7ToMLnEeto9sXA6OgAAgD8AAIA/ZrCOvOX/tD/4pOq9eQInvm59xrxXx4i9AAAAAAAAAADTNAC+G8EnP8rVpzxpQqm+206rvP2Y0jwAAAAAAAAAAG1jDL6xWc8+msnvPMEchL4qc668MH6GPQAAAAAAAAAAQgyFvsOeFbyqrDk90Xkdvqk/mz3CwCY/AACAPwAAAAAztqs92bp9PxqjIT4MZLa+H7WnPXNyOT0AAAAAAAAAAM2csbwpiDq6tg+dNzN54bAiT5O7Vue2tgAAgD8AAIA/TWogPQEUvj10FAY9jMkNvj8ExjxOvTs8AAAAAAAAAAAg/j6+Tta4vECqXLutEMq5L18pPnL1lToAAIA/AACAPwZsIT5P1Vm826nyOp6wF7lycsS9TrshugAAgD8AAIA/xpcHvvzFxD59E9e9Fuk8vrLNmr2bZeS8AAAAAAAAAAAmJM49uBi5OmOQib6J5AW+QeyHvGV68j4AAIA/AAAAAIAuFr5d8O8+LLI6PST4Wb4indi8TU8ePAAAAAAAAAAAmnUoPHdupT/dVKw90VHwvrT/JTy9v/A6AAAAAAAAAACmGUS+KeclO6hojrFEByyyk6PKvB+rHjEAAIA/AACAP5bPbb6h+ZI9lkKOPSmZFL63lYa8HmrCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAfwMx46faqMAWyUTQ8BjAF0lEdAmpMyUX531XV9lChoBkdAQKpikO7QLWgHS/hoCEdAmpUuYplSTHV9lChoBkdAbWXwcYIjW2gHTSsBaAhHQJqZm0E5hjR1fZQoaAZHQG2agz544ZNoB01CAWgIR0CamcDMNc4YdX2UKGgGR0Br13CCSRr8aAdNZgFoCEdAmppTk6tDD3V9lChoBkdAbpnUMoc7yWgHTWQBaAhHQJqbvdM0xdp1fZQoaAZHQGUChx5s0pFoB03oA2gIR0CanHFWn0kGdX2UKGgGR0ByoMnhKlHjaAdNCQFoCEdAmp2Jha1Ti3V9lChoBkdAbgW+FlCkXWgHTUcBaAhHQJqeBtxdY4h1fZQoaAZHQG7lkFwDNhVoB03vAWgIR0CanyeT3Zf2dX2UKGgGR0Bu7dxffGdaaAdN5QFoCEdAmqAcbaRISXV9lChoBkdAPiU8ifQKKGgHTRoBaAhHQJqh2814xDd1fZQoaAZHQGF4iI1tO21oB03oA2gIR0CaosN+LFXJdX2UKGgGR8AFnNVzZHuraAdNKgFoCEdAmqPgpKBd2XV9lChoBkdAX6zXRPXTVmgHTegDaAhHQJqk9xgiNbV1fZQoaAZHQHAPbRBu4w1oB00pAWgIR0CapXNcGC7LdX2UKGgGR0BTlsfRu0kXaAdN6ANoCEdAmu6NKmKqGXV9lChoBkdAbeInUlRgqmgHTT0BaAhHQJrv9wOvt+l1fZQoaAZHQHDRFl9Sde9oB00nAWgIR0Ca8aI3BHkMdX2UKGgGR0BvBxVCHARDaAdNbAFoCEdAmvMezD4xlHV9lChoBkdAbfuO+7Dl5mgHTY0BaAhHQJrzUuanaWZ1fZQoaAZHQG8pbQ9ic5NoB004AWgIR0Ca82yWRigCdX2UKGgGR0Bt0npW3jMnaAdNEQJoCEdAmvQo3R5TqHV9lChoBkdAcX6J+UhV2mgHTT8BaAhHQJr0YO6NEPV1fZQoaAZHQHBR8bFS88NoB02+AWgIR0Ca9UuuieundX2UKGgGR0BvUjeZXuE3aAdNOwFoCEdAmvWA3T/hl3V9lChoBkdAasMrksBhhGgHTSgBaAhHQJr2o+LWI451fZQoaAZHQHEpYFiay8loB03GAWgIR0Ca98LxqfvndX2UKGgGR0BtdRGnXNC7aAdNPgFoCEdAmvjqpgkTpXV9lChoBkdAb0KwblzU7WgHTWwBaAhHQJr6NKHwgDB1fZQoaAZHQHAlHLq2SdRoB00gAWgIR0Ca+lr+YMOPdX2UKGgGR8ApwVObiIcjaAdNAwFoCEdAmvpvXbuc+nV9lChoBkdAb0UfwqiGnGgHTdkBaAhHQJr8Cx9oexR1fZQoaAZHQG92K94/u9hoB00cAWgIR0Ca/Mp9qk/KdX2UKGgGR0BwRlFz+3pfaAdNKgFoCEdAmwBzGDL8rXV9lChoBkdAa0iVKwpvxmgHTTwBaAhHQJsAgIyCWeJ1fZQoaAZHQHAR+qWC2+hoB01fAWgIR0CbAg2Yv38GdX2UKGgGR0A1cnHvMKTjaAdNCgFoCEdAmwJEcfeUIXV9lChoBkdAb9xvaURnOGgHTT0BaAhHQJsC5jmSyMV1fZQoaAZHQHEGV7MPjGVoB010AWgIR0CbBJvIfbKzdX2UKGgGR0BwrBQ9A5aNaAdNGgFoCEdAmwZRbwBo3HV9lChoBkdAb184ffXPJWgHTTwBaAhHQJsGZjWkJrt1fZQoaAZHQB4icXm/339oB00nAWgIR0CbCJTINmUXdX2UKGgGR0BvW/HLidauaAdNJwFoCEdAmwioJiRW93V9lChoBkdAcIvdZq20A2gHTSABaAhHQJsKsvlEJBx1fZQoaAZHQHDlX0Gu9vloB01EAmgIR0CbDHaCtihGdX2UKGgGR0BwXnyf+S8raAdNMQFoCEdAmw5UALiMpHV9lChoBkdAYYIxRl6JImgHTegDaAhHQJsPRRuTA311fZQoaAZHQG8DeenQ6ZJoB00uAWgIR0CbD8PuogmrdX2UKGgGR0BweIAo5PuYaAdNGwFoCEdAmxD4vrWy1XV9lChoBkdAcZDzF+/gzmgHTVgBaAhHQJsRYo9cKPZ1fZQoaAZHQHErcE7nxKBoB01SAWgIR0CbEdFYuCf6dX2UKGgGR0A0WixmkFfRaAdNEwFoCEdAmxH6xkd3jnV9lChoBkdAcHeMkyDZlGgHTSYBaAhHQJsSldhRZU11fZQoaAZHQGw5GY8dPtVoB02+AWgIR0CbFAN83MpxdX2UKGgGR0BwY9MEidJ8aAdNKwFoCEdAmxSO1OTJQ3V9lChoBkdAcT1t6HCXQmgHTUABaAhHQJsXbeHi3od1fZQoaAZHQB/F9Brvb49oB0v5aAhHQJsYDNmlImR1fZQoaAZHQG5BMhHLA59oB02dAmgIR0CbGUgccU/OdX2UKGgGR0BtJLuIAOriaAdNUwFoCEdAmxoVSbYsd3V9lChoBkdAbDsrNnoPkWgHTTABaAhHQJsb4Tg2qDN1fZQoaAZHQHACnjABT4toB00/AWgIR0CbHBq+ajN7dX2UKGgGR0Bw9MkHD766aAdNFgFoCEdAmx0VUADJVHV9lChoBkdAcKs0JWvKU2gHTSwBaAhHQJsd1C2MKkV1fZQoaAZHQG8tww0waitoB01CAWgIR0CbH8J2t+1CdX2UKGgGR0BvEP7Lt/nXaAdNbgFoCEdAmx/PaHsTnXV9lChoBkdAYeN89fTkQ2gHTegDaAhHQJsgFwzch1V1fZQoaAZHQGtVCGWUr09oB000AWgIR0CbINDM/yG0dX2UKGgGR0BuL6oIfKZEaAdNfgJoCEdAmyKiPMjeK3V9lChoBkdAcZbWKdhAnmgHTRwBaAhHQJskBeKKpDN1fZQoaAZHQHBQXoHLRrtoB001AWgIR0CbJHV/MGHIdX2UKGgGR0BjpFQhwEQoaAdN6ANoCEdAmyUUzGgi/3V9lChoBkdAbttGPxQSBmgHTUwBaAhHQJsoOWszVMF1fZQoaAZHQGqT464lQdloB001AmgIR0CbKHn3ta6jdX2UKGgGR0BwWmUaAFxGaAdNMAFoCEdAmyjmGZeAu3V9lChoBkdAcMsAAQxvemgHTSQBaAhHQJsqIl6Z6Ut1fZQoaAZHQGxtrHMlkYpoB005AWgIR0CbKkcvugHvdX2UKGgGR0BwjtuwX668aAdNFQFoCEdAmytPNmlImXV9lChoBkdAbWq5y2hIv2gHTSgBaAhHQJssE5Jbt7d1fZQoaAZHQHDCjcqOLixoB00wAWgIR0CbLKuzhP0qdX2UKGgGR0BwRou27Wd3aAdNowFoCEdAmy1j2FnIyXV9lChoBkdAcYbOnEVFhGgHTXwBaAhHQJswx/4Irvt1fZQoaAZHQG+j19v0h/1oB00iAWgIR0CbMgOnEVFhdX2UKGgGR0BwUNwT/Q0GaAdNRQFoCEdAmzM0JKJ2uHV9lChoBkdAcIq/iYLLIWgHTVYBaAhHQJszkbn5i3J1fZQoaAZHQG3EeaKDTSdoB003AWgIR0CbN7IoVmBfdX2UKGgGR0Bx6NMi8nNQaAdNJgFoCEdAmzk+Yx+KCXV9lChoBke/0JR0lqrR0GgHTRoBaAhHQJs6OjtXxON1fZQoaAZHQHH7cDbJwKloB015AWgIR0CbO3wsGxD9dX2UKGgGR0Bxs6KZUkv9aAdNVQFoCEdAmzvOHWSU1XV9lChoBkdAcUzSv1UVBWgHTUQBaAhHQJs9HVG0/np1fZQoaAZHQHCnyWAwwkBoB004AWgIR0CbPTuanaWYdX2UKGgGR0BwEiSq2jO+aAdNPQFoCEdAmz4xBNVR13V9lChoBkdAa8jos7MgU2gHTSkBaAhHQJtBk2Q4jr11fZQoaAZHQG6DSZSeiBZoB00YAWgIR0CbQa9r433pdX2UKGgGR0BiQBa9sabXaAdN6ANoCEdAm0IRMajveHV9lChoBkdAb07eSjgydmgHTT4BaAhHQJtDhJnQID51fZQoaAZHQG7eDtw71ZloB00pAWgIR0CbRaMZP2wndX2UKGgGR0BvU05n13+uaAdNMwFoCEdAm0c+bd8ArHV9lChoBkdAYYLSrHU+cGgHTegDaAhHQJtHXAAQxvh1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 124,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0eec04c6b37dd9c40978c4c807c6f62b028279f2fdf249fd90e06aee7b40bc2
|
3 |
+
size 87929
|
LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:211b8e0b846fda55645db116587969d3f2f006666013656942a92e8e0c7c7d71
|
3 |
+
size 43329
|
LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.52 +/- 15.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc5e3617eb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc5e3617f40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc5e3628040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc5e36280d0>", "_build": "<function ActorCriticPolicy._build at 0x7cc5e3628160>", "forward": "<function ActorCriticPolicy.forward at 0x7cc5e36281f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc5e3628280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc5e3628310>", "_predict": "<function ActorCriticPolicy._predict at 0x7cc5e36283a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc5e3628430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc5e36284c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc5e3628550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cc5e3620f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690092364965885958, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMaNX75cwH685WYZu7ToMLnEeto9sXA6OgAAgD8AAIA/ZrCOvOX/tD/4pOq9eQInvm59xrxXx4i9AAAAAAAAAADTNAC+G8EnP8rVpzxpQqm+206rvP2Y0jwAAAAAAAAAAG1jDL6xWc8+msnvPMEchL4qc668MH6GPQAAAAAAAAAAQgyFvsOeFbyqrDk90Xkdvqk/mz3CwCY/AACAPwAAAAAztqs92bp9PxqjIT4MZLa+H7WnPXNyOT0AAAAAAAAAAM2csbwpiDq6tg+dNzN54bAiT5O7Vue2tgAAgD8AAIA/TWogPQEUvj10FAY9jMkNvj8ExjxOvTs8AAAAAAAAAAAg/j6+Tta4vECqXLutEMq5L18pPnL1lToAAIA/AACAPwZsIT5P1Vm826nyOp6wF7lycsS9TrshugAAgD8AAIA/xpcHvvzFxD59E9e9Fuk8vrLNmr2bZeS8AAAAAAAAAAAmJM49uBi5OmOQib6J5AW+QeyHvGV68j4AAIA/AAAAAIAuFr5d8O8+LLI6PST4Wb4indi8TU8ePAAAAAAAAAAAmnUoPHdupT/dVKw90VHwvrT/JTy9v/A6AAAAAAAAAACmGUS+KeclO6hojrFEByyyk6PKvB+rHjEAAIA/AACAP5bPbb6h+ZI9lkKOPSmZFL63lYa8HmrCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAfwMx46faqMAWyUTQ8BjAF0lEdAmpMyUX531XV9lChoBkdAQKpikO7QLWgHS/hoCEdAmpUuYplSTHV9lChoBkdAbWXwcYIjW2gHTSsBaAhHQJqZm0E5hjR1fZQoaAZHQG2agz544ZNoB01CAWgIR0CamcDMNc4YdX2UKGgGR0Br13CCSRr8aAdNZgFoCEdAmppTk6tDD3V9lChoBkdAbpnUMoc7yWgHTWQBaAhHQJqbvdM0xdp1fZQoaAZHQGUChx5s0pFoB03oA2gIR0CanHFWn0kGdX2UKGgGR0ByoMnhKlHjaAdNCQFoCEdAmp2Jha1Ti3V9lChoBkdAbgW+FlCkXWgHTUcBaAhHQJqeBtxdY4h1fZQoaAZHQG7lkFwDNhVoB03vAWgIR0CanyeT3Zf2dX2UKGgGR0Bu7dxffGdaaAdN5QFoCEdAmqAcbaRISXV9lChoBkdAPiU8ifQKKGgHTRoBaAhHQJqh2814xDd1fZQoaAZHQGF4iI1tO21oB03oA2gIR0CaosN+LFXJdX2UKGgGR8AFnNVzZHuraAdNKgFoCEdAmqPgpKBd2XV9lChoBkdAX6zXRPXTVmgHTegDaAhHQJqk9xgiNbV1fZQoaAZHQHAPbRBu4w1oB00pAWgIR0CapXNcGC7LdX2UKGgGR0BTlsfRu0kXaAdN6ANoCEdAmu6NKmKqGXV9lChoBkdAbeInUlRgqmgHTT0BaAhHQJrv9wOvt+l1fZQoaAZHQHDRFl9Sde9oB00nAWgIR0Ca8aI3BHkMdX2UKGgGR0BvBxVCHARDaAdNbAFoCEdAmvMezD4xlHV9lChoBkdAbfuO+7Dl5mgHTY0BaAhHQJrzUuanaWZ1fZQoaAZHQG8pbQ9ic5NoB004AWgIR0Ca82yWRigCdX2UKGgGR0Bt0npW3jMnaAdNEQJoCEdAmvQo3R5TqHV9lChoBkdAcX6J+UhV2mgHTT8BaAhHQJr0YO6NEPV1fZQoaAZHQHBR8bFS88NoB02+AWgIR0Ca9UuuieundX2UKGgGR0BvUjeZXuE3aAdNOwFoCEdAmvWA3T/hl3V9lChoBkdAasMrksBhhGgHTSgBaAhHQJr2o+LWI451fZQoaAZHQHEpYFiay8loB03GAWgIR0Ca98LxqfvndX2UKGgGR0BtdRGnXNC7aAdNPgFoCEdAmvjqpgkTpXV9lChoBkdAb0KwblzU7WgHTWwBaAhHQJr6NKHwgDB1fZQoaAZHQHAlHLq2SdRoB00gAWgIR0Ca+lr+YMOPdX2UKGgGR8ApwVObiIcjaAdNAwFoCEdAmvpvXbuc+nV9lChoBkdAb0UfwqiGnGgHTdkBaAhHQJr8Cx9oexR1fZQoaAZHQG92K94/u9hoB00cAWgIR0Ca/Mp9qk/KdX2UKGgGR0BwRlFz+3pfaAdNKgFoCEdAmwBzGDL8rXV9lChoBkdAa0iVKwpvxmgHTTwBaAhHQJsAgIyCWeJ1fZQoaAZHQHAR+qWC2+hoB01fAWgIR0CbAg2Yv38GdX2UKGgGR0A1cnHvMKTjaAdNCgFoCEdAmwJEcfeUIXV9lChoBkdAb9xvaURnOGgHTT0BaAhHQJsC5jmSyMV1fZQoaAZHQHEGV7MPjGVoB010AWgIR0CbBJvIfbKzdX2UKGgGR0BwrBQ9A5aNaAdNGgFoCEdAmwZRbwBo3HV9lChoBkdAb184ffXPJWgHTTwBaAhHQJsGZjWkJrt1fZQoaAZHQB4icXm/339oB00nAWgIR0CbCJTINmUXdX2UKGgGR0BvW/HLidauaAdNJwFoCEdAmwioJiRW93V9lChoBkdAcIvdZq20A2gHTSABaAhHQJsKsvlEJBx1fZQoaAZHQHDlX0Gu9vloB01EAmgIR0CbDHaCtihGdX2UKGgGR0BwXnyf+S8raAdNMQFoCEdAmw5UALiMpHV9lChoBkdAYYIxRl6JImgHTegDaAhHQJsPRRuTA311fZQoaAZHQG8DeenQ6ZJoB00uAWgIR0CbD8PuogmrdX2UKGgGR0BweIAo5PuYaAdNGwFoCEdAmxD4vrWy1XV9lChoBkdAcZDzF+/gzmgHTVgBaAhHQJsRYo9cKPZ1fZQoaAZHQHErcE7nxKBoB01SAWgIR0CbEdFYuCf6dX2UKGgGR0A0WixmkFfRaAdNEwFoCEdAmxH6xkd3jnV9lChoBkdAcHeMkyDZlGgHTSYBaAhHQJsSldhRZU11fZQoaAZHQGw5GY8dPtVoB02+AWgIR0CbFAN83MpxdX2UKGgGR0BwY9MEidJ8aAdNKwFoCEdAmxSO1OTJQ3V9lChoBkdAcT1t6HCXQmgHTUABaAhHQJsXbeHi3od1fZQoaAZHQB/F9Brvb49oB0v5aAhHQJsYDNmlImR1fZQoaAZHQG5BMhHLA59oB02dAmgIR0CbGUgccU/OdX2UKGgGR0BtJLuIAOriaAdNUwFoCEdAmxoVSbYsd3V9lChoBkdAbDsrNnoPkWgHTTABaAhHQJsb4Tg2qDN1fZQoaAZHQHACnjABT4toB00/AWgIR0CbHBq+ajN7dX2UKGgGR0Bw9MkHD766aAdNFgFoCEdAmx0VUADJVHV9lChoBkdAcKs0JWvKU2gHTSwBaAhHQJsd1C2MKkV1fZQoaAZHQG8tww0waitoB01CAWgIR0CbH8J2t+1CdX2UKGgGR0BvEP7Lt/nXaAdNbgFoCEdAmx/PaHsTnXV9lChoBkdAYeN89fTkQ2gHTegDaAhHQJsgFwzch1V1fZQoaAZHQGtVCGWUr09oB000AWgIR0CbINDM/yG0dX2UKGgGR0BuL6oIfKZEaAdNfgJoCEdAmyKiPMjeK3V9lChoBkdAcZbWKdhAnmgHTRwBaAhHQJskBeKKpDN1fZQoaAZHQHBQXoHLRrtoB001AWgIR0CbJHV/MGHIdX2UKGgGR0BjpFQhwEQoaAdN6ANoCEdAmyUUzGgi/3V9lChoBkdAbttGPxQSBmgHTUwBaAhHQJsoOWszVMF1fZQoaAZHQGqT464lQdloB001AmgIR0CbKHn3ta6jdX2UKGgGR0BwWmUaAFxGaAdNMAFoCEdAmyjmGZeAu3V9lChoBkdAcMsAAQxvemgHTSQBaAhHQJsqIl6Z6Ut1fZQoaAZHQGxtrHMlkYpoB005AWgIR0CbKkcvugHvdX2UKGgGR0BwjtuwX668aAdNFQFoCEdAmytPNmlImXV9lChoBkdAbWq5y2hIv2gHTSgBaAhHQJssE5Jbt7d1fZQoaAZHQHDCjcqOLixoB00wAWgIR0CbLKuzhP0qdX2UKGgGR0BwRou27Wd3aAdNowFoCEdAmy1j2FnIyXV9lChoBkdAcYbOnEVFhGgHTXwBaAhHQJswx/4Irvt1fZQoaAZHQG+j19v0h/1oB00iAWgIR0CbMgOnEVFhdX2UKGgGR0BwUNwT/Q0GaAdNRQFoCEdAmzM0JKJ2uHV9lChoBkdAcIq/iYLLIWgHTVYBaAhHQJszkbn5i3J1fZQoaAZHQG3EeaKDTSdoB003AWgIR0CbN7IoVmBfdX2UKGgGR0Bx6NMi8nNQaAdNJgFoCEdAmzk+Yx+KCXV9lChoBke/0JR0lqrR0GgHTRoBaAhHQJs6OjtXxON1fZQoaAZHQHH7cDbJwKloB015AWgIR0CbO3wsGxD9dX2UKGgGR0Bxs6KZUkv9aAdNVQFoCEdAmzvOHWSU1XV9lChoBkdAcUzSv1UVBWgHTUQBaAhHQJs9HVG0/np1fZQoaAZHQHCnyWAwwkBoB004AWgIR0CbPTuanaWYdX2UKGgGR0BwEiSq2jO+aAdNPQFoCEdAmz4xBNVR13V9lChoBkdAa8jos7MgU2gHTSkBaAhHQJtBk2Q4jr11fZQoaAZHQG6DSZSeiBZoB00YAWgIR0CbQa9r433pdX2UKGgGR0BiQBa9sabXaAdN6ANoCEdAm0IRMajveHV9lChoBkdAb07eSjgydmgHTT4BaAhHQJtDhJnQID51fZQoaAZHQG7eDtw71ZloB00pAWgIR0CbRaMZP2wndX2UKGgGR0BvU05n13+uaAdNMwFoCEdAm0c+bd8ArHV9lChoBkdAYYLSrHU+cGgHTegDaAhHQJtHXAAQxvh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (195 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.51599240000002, "std_reward": 15.621220314552074, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-23T06:36:37.423456"}
|