rahul-appu commited on
Commit
7511df4
1 Parent(s): e06aad1

Fast Upload

Browse files
LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb85007b9e8094c90a40f2c5f5a054b5c7b04b2b3a8dab2489bd0f748df69d0d
3
+ size 146751
LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
LunarLander/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc5e3617eb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc5e3617f40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc5e3628040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc5e36280d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7cc5e3628160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7cc5e36281f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc5e3628280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc5e3628310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7cc5e36283a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc5e3628430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc5e36284c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc5e3628550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7cc5e3620f40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690092364965885958,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMaNX75cwH685WYZu7ToMLnEeto9sXA6OgAAgD8AAIA/ZrCOvOX/tD/4pOq9eQInvm59xrxXx4i9AAAAAAAAAADTNAC+G8EnP8rVpzxpQqm+206rvP2Y0jwAAAAAAAAAAG1jDL6xWc8+msnvPMEchL4qc668MH6GPQAAAAAAAAAAQgyFvsOeFbyqrDk90Xkdvqk/mz3CwCY/AACAPwAAAAAztqs92bp9PxqjIT4MZLa+H7WnPXNyOT0AAAAAAAAAAM2csbwpiDq6tg+dNzN54bAiT5O7Vue2tgAAgD8AAIA/TWogPQEUvj10FAY9jMkNvj8ExjxOvTs8AAAAAAAAAAAg/j6+Tta4vECqXLutEMq5L18pPnL1lToAAIA/AACAPwZsIT5P1Vm826nyOp6wF7lycsS9TrshugAAgD8AAIA/xpcHvvzFxD59E9e9Fuk8vrLNmr2bZeS8AAAAAAAAAAAmJM49uBi5OmOQib6J5AW+QeyHvGV68j4AAIA/AAAAAIAuFr5d8O8+LLI6PST4Wb4indi8TU8ePAAAAAAAAAAAmnUoPHdupT/dVKw90VHwvrT/JTy9v/A6AAAAAAAAAACmGUS+KeclO6hojrFEByyyk6PKvB+rHjEAAIA/AACAP5bPbb6h+ZI9lkKOPSmZFL63lYa8HmrCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAfwMx46faqMAWyUTQ8BjAF0lEdAmpMyUX531XV9lChoBkdAQKpikO7QLWgHS/hoCEdAmpUuYplSTHV9lChoBkdAbWXwcYIjW2gHTSsBaAhHQJqZm0E5hjR1fZQoaAZHQG2agz544ZNoB01CAWgIR0CamcDMNc4YdX2UKGgGR0Br13CCSRr8aAdNZgFoCEdAmppTk6tDD3V9lChoBkdAbpnUMoc7yWgHTWQBaAhHQJqbvdM0xdp1fZQoaAZHQGUChx5s0pFoB03oA2gIR0CanHFWn0kGdX2UKGgGR0ByoMnhKlHjaAdNCQFoCEdAmp2Jha1Ti3V9lChoBkdAbgW+FlCkXWgHTUcBaAhHQJqeBtxdY4h1fZQoaAZHQG7lkFwDNhVoB03vAWgIR0CanyeT3Zf2dX2UKGgGR0Bu7dxffGdaaAdN5QFoCEdAmqAcbaRISXV9lChoBkdAPiU8ifQKKGgHTRoBaAhHQJqh2814xDd1fZQoaAZHQGF4iI1tO21oB03oA2gIR0CaosN+LFXJdX2UKGgGR8AFnNVzZHuraAdNKgFoCEdAmqPgpKBd2XV9lChoBkdAX6zXRPXTVmgHTegDaAhHQJqk9xgiNbV1fZQoaAZHQHAPbRBu4w1oB00pAWgIR0CapXNcGC7LdX2UKGgGR0BTlsfRu0kXaAdN6ANoCEdAmu6NKmKqGXV9lChoBkdAbeInUlRgqmgHTT0BaAhHQJrv9wOvt+l1fZQoaAZHQHDRFl9Sde9oB00nAWgIR0Ca8aI3BHkMdX2UKGgGR0BvBxVCHARDaAdNbAFoCEdAmvMezD4xlHV9lChoBkdAbfuO+7Dl5mgHTY0BaAhHQJrzUuanaWZ1fZQoaAZHQG8pbQ9ic5NoB004AWgIR0Ca82yWRigCdX2UKGgGR0Bt0npW3jMnaAdNEQJoCEdAmvQo3R5TqHV9lChoBkdAcX6J+UhV2mgHTT8BaAhHQJr0YO6NEPV1fZQoaAZHQHBR8bFS88NoB02+AWgIR0Ca9UuuieundX2UKGgGR0BvUjeZXuE3aAdNOwFoCEdAmvWA3T/hl3V9lChoBkdAasMrksBhhGgHTSgBaAhHQJr2o+LWI451fZQoaAZHQHEpYFiay8loB03GAWgIR0Ca98LxqfvndX2UKGgGR0BtdRGnXNC7aAdNPgFoCEdAmvjqpgkTpXV9lChoBkdAb0KwblzU7WgHTWwBaAhHQJr6NKHwgDB1fZQoaAZHQHAlHLq2SdRoB00gAWgIR0Ca+lr+YMOPdX2UKGgGR8ApwVObiIcjaAdNAwFoCEdAmvpvXbuc+nV9lChoBkdAb0UfwqiGnGgHTdkBaAhHQJr8Cx9oexR1fZQoaAZHQG92K94/u9hoB00cAWgIR0Ca/Mp9qk/KdX2UKGgGR0BwRlFz+3pfaAdNKgFoCEdAmwBzGDL8rXV9lChoBkdAa0iVKwpvxmgHTTwBaAhHQJsAgIyCWeJ1fZQoaAZHQHAR+qWC2+hoB01fAWgIR0CbAg2Yv38GdX2UKGgGR0A1cnHvMKTjaAdNCgFoCEdAmwJEcfeUIXV9lChoBkdAb9xvaURnOGgHTT0BaAhHQJsC5jmSyMV1fZQoaAZHQHEGV7MPjGVoB010AWgIR0CbBJvIfbKzdX2UKGgGR0BwrBQ9A5aNaAdNGgFoCEdAmwZRbwBo3HV9lChoBkdAb184ffXPJWgHTTwBaAhHQJsGZjWkJrt1fZQoaAZHQB4icXm/339oB00nAWgIR0CbCJTINmUXdX2UKGgGR0BvW/HLidauaAdNJwFoCEdAmwioJiRW93V9lChoBkdAcIvdZq20A2gHTSABaAhHQJsKsvlEJBx1fZQoaAZHQHDlX0Gu9vloB01EAmgIR0CbDHaCtihGdX2UKGgGR0BwXnyf+S8raAdNMQFoCEdAmw5UALiMpHV9lChoBkdAYYIxRl6JImgHTegDaAhHQJsPRRuTA311fZQoaAZHQG8DeenQ6ZJoB00uAWgIR0CbD8PuogmrdX2UKGgGR0BweIAo5PuYaAdNGwFoCEdAmxD4vrWy1XV9lChoBkdAcZDzF+/gzmgHTVgBaAhHQJsRYo9cKPZ1fZQoaAZHQHErcE7nxKBoB01SAWgIR0CbEdFYuCf6dX2UKGgGR0A0WixmkFfRaAdNEwFoCEdAmxH6xkd3jnV9lChoBkdAcHeMkyDZlGgHTSYBaAhHQJsSldhRZU11fZQoaAZHQGw5GY8dPtVoB02+AWgIR0CbFAN83MpxdX2UKGgGR0BwY9MEidJ8aAdNKwFoCEdAmxSO1OTJQ3V9lChoBkdAcT1t6HCXQmgHTUABaAhHQJsXbeHi3od1fZQoaAZHQB/F9Brvb49oB0v5aAhHQJsYDNmlImR1fZQoaAZHQG5BMhHLA59oB02dAmgIR0CbGUgccU/OdX2UKGgGR0BtJLuIAOriaAdNUwFoCEdAmxoVSbYsd3V9lChoBkdAbDsrNnoPkWgHTTABaAhHQJsb4Tg2qDN1fZQoaAZHQHACnjABT4toB00/AWgIR0CbHBq+ajN7dX2UKGgGR0Bw9MkHD766aAdNFgFoCEdAmx0VUADJVHV9lChoBkdAcKs0JWvKU2gHTSwBaAhHQJsd1C2MKkV1fZQoaAZHQG8tww0waitoB01CAWgIR0CbH8J2t+1CdX2UKGgGR0BvEP7Lt/nXaAdNbgFoCEdAmx/PaHsTnXV9lChoBkdAYeN89fTkQ2gHTegDaAhHQJsgFwzch1V1fZQoaAZHQGtVCGWUr09oB000AWgIR0CbINDM/yG0dX2UKGgGR0BuL6oIfKZEaAdNfgJoCEdAmyKiPMjeK3V9lChoBkdAcZbWKdhAnmgHTRwBaAhHQJskBeKKpDN1fZQoaAZHQHBQXoHLRrtoB001AWgIR0CbJHV/MGHIdX2UKGgGR0BjpFQhwEQoaAdN6ANoCEdAmyUUzGgi/3V9lChoBkdAbttGPxQSBmgHTUwBaAhHQJsoOWszVMF1fZQoaAZHQGqT464lQdloB001AmgIR0CbKHn3ta6jdX2UKGgGR0BwWmUaAFxGaAdNMAFoCEdAmyjmGZeAu3V9lChoBkdAcMsAAQxvemgHTSQBaAhHQJsqIl6Z6Ut1fZQoaAZHQGxtrHMlkYpoB005AWgIR0CbKkcvugHvdX2UKGgGR0BwjtuwX668aAdNFQFoCEdAmytPNmlImXV9lChoBkdAbWq5y2hIv2gHTSgBaAhHQJssE5Jbt7d1fZQoaAZHQHDCjcqOLixoB00wAWgIR0CbLKuzhP0qdX2UKGgGR0BwRou27Wd3aAdNowFoCEdAmy1j2FnIyXV9lChoBkdAcYbOnEVFhGgHTXwBaAhHQJswx/4Irvt1fZQoaAZHQG+j19v0h/1oB00iAWgIR0CbMgOnEVFhdX2UKGgGR0BwUNwT/Q0GaAdNRQFoCEdAmzM0JKJ2uHV9lChoBkdAcIq/iYLLIWgHTVYBaAhHQJszkbn5i3J1fZQoaAZHQG3EeaKDTSdoB003AWgIR0CbN7IoVmBfdX2UKGgGR0Bx6NMi8nNQaAdNJgFoCEdAmzk+Yx+KCXV9lChoBke/0JR0lqrR0GgHTRoBaAhHQJs6OjtXxON1fZQoaAZHQHH7cDbJwKloB015AWgIR0CbO3wsGxD9dX2UKGgGR0Bxs6KZUkv9aAdNVQFoCEdAmzvOHWSU1XV9lChoBkdAcUzSv1UVBWgHTUQBaAhHQJs9HVG0/np1fZQoaAZHQHCnyWAwwkBoB004AWgIR0CbPTuanaWYdX2UKGgGR0BwEiSq2jO+aAdNPQFoCEdAmz4xBNVR13V9lChoBkdAa8jos7MgU2gHTSkBaAhHQJtBk2Q4jr11fZQoaAZHQG6DSZSeiBZoB00YAWgIR0CbQa9r433pdX2UKGgGR0BiQBa9sabXaAdN6ANoCEdAm0IRMajveHV9lChoBkdAb07eSjgydmgHTT4BaAhHQJtDhJnQID51fZQoaAZHQG7eDtw71ZloB00pAWgIR0CbRaMZP2wndX2UKGgGR0BvU05n13+uaAdNMwFoCEdAm0c+bd8ArHV9lChoBkdAYYLSrHU+cGgHTegDaAhHQJtHXAAQxvh1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 124,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 32,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0eec04c6b37dd9c40978c4c807c6f62b028279f2fdf249fd90e06aee7b40bc2
3
+ size 87929
LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:211b8e0b846fda55645db116587969d3f2f006666013656942a92e8e0c7c7d71
3
+ size 43329
LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.52 +/- 15.62
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cc5e3617eb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cc5e3617f40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cc5e3628040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cc5e36280d0>", "_build": "<function ActorCriticPolicy._build at 0x7cc5e3628160>", "forward": "<function ActorCriticPolicy.forward at 0x7cc5e36281f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cc5e3628280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cc5e3628310>", "_predict": "<function ActorCriticPolicy._predict at 0x7cc5e36283a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cc5e3628430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cc5e36284c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cc5e3628550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cc5e3620f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690092364965885958, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMaNX75cwH685WYZu7ToMLnEeto9sXA6OgAAgD8AAIA/ZrCOvOX/tD/4pOq9eQInvm59xrxXx4i9AAAAAAAAAADTNAC+G8EnP8rVpzxpQqm+206rvP2Y0jwAAAAAAAAAAG1jDL6xWc8+msnvPMEchL4qc668MH6GPQAAAAAAAAAAQgyFvsOeFbyqrDk90Xkdvqk/mz3CwCY/AACAPwAAAAAztqs92bp9PxqjIT4MZLa+H7WnPXNyOT0AAAAAAAAAAM2csbwpiDq6tg+dNzN54bAiT5O7Vue2tgAAgD8AAIA/TWogPQEUvj10FAY9jMkNvj8ExjxOvTs8AAAAAAAAAAAg/j6+Tta4vECqXLutEMq5L18pPnL1lToAAIA/AACAPwZsIT5P1Vm826nyOp6wF7lycsS9TrshugAAgD8AAIA/xpcHvvzFxD59E9e9Fuk8vrLNmr2bZeS8AAAAAAAAAAAmJM49uBi5OmOQib6J5AW+QeyHvGV68j4AAIA/AAAAAIAuFr5d8O8+LLI6PST4Wb4indi8TU8ePAAAAAAAAAAAmnUoPHdupT/dVKw90VHwvrT/JTy9v/A6AAAAAAAAAACmGUS+KeclO6hojrFEByyyk6PKvB+rHjEAAIA/AACAP5bPbb6h+ZI9lkKOPSmZFL63lYa8HmrCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAfwMx46faqMAWyUTQ8BjAF0lEdAmpMyUX531XV9lChoBkdAQKpikO7QLWgHS/hoCEdAmpUuYplSTHV9lChoBkdAbWXwcYIjW2gHTSsBaAhHQJqZm0E5hjR1fZQoaAZHQG2agz544ZNoB01CAWgIR0CamcDMNc4YdX2UKGgGR0Br13CCSRr8aAdNZgFoCEdAmppTk6tDD3V9lChoBkdAbpnUMoc7yWgHTWQBaAhHQJqbvdM0xdp1fZQoaAZHQGUChx5s0pFoB03oA2gIR0CanHFWn0kGdX2UKGgGR0ByoMnhKlHjaAdNCQFoCEdAmp2Jha1Ti3V9lChoBkdAbgW+FlCkXWgHTUcBaAhHQJqeBtxdY4h1fZQoaAZHQG7lkFwDNhVoB03vAWgIR0CanyeT3Zf2dX2UKGgGR0Bu7dxffGdaaAdN5QFoCEdAmqAcbaRISXV9lChoBkdAPiU8ifQKKGgHTRoBaAhHQJqh2814xDd1fZQoaAZHQGF4iI1tO21oB03oA2gIR0CaosN+LFXJdX2UKGgGR8AFnNVzZHuraAdNKgFoCEdAmqPgpKBd2XV9lChoBkdAX6zXRPXTVmgHTegDaAhHQJqk9xgiNbV1fZQoaAZHQHAPbRBu4w1oB00pAWgIR0CapXNcGC7LdX2UKGgGR0BTlsfRu0kXaAdN6ANoCEdAmu6NKmKqGXV9lChoBkdAbeInUlRgqmgHTT0BaAhHQJrv9wOvt+l1fZQoaAZHQHDRFl9Sde9oB00nAWgIR0Ca8aI3BHkMdX2UKGgGR0BvBxVCHARDaAdNbAFoCEdAmvMezD4xlHV9lChoBkdAbfuO+7Dl5mgHTY0BaAhHQJrzUuanaWZ1fZQoaAZHQG8pbQ9ic5NoB004AWgIR0Ca82yWRigCdX2UKGgGR0Bt0npW3jMnaAdNEQJoCEdAmvQo3R5TqHV9lChoBkdAcX6J+UhV2mgHTT8BaAhHQJr0YO6NEPV1fZQoaAZHQHBR8bFS88NoB02+AWgIR0Ca9UuuieundX2UKGgGR0BvUjeZXuE3aAdNOwFoCEdAmvWA3T/hl3V9lChoBkdAasMrksBhhGgHTSgBaAhHQJr2o+LWI451fZQoaAZHQHEpYFiay8loB03GAWgIR0Ca98LxqfvndX2UKGgGR0BtdRGnXNC7aAdNPgFoCEdAmvjqpgkTpXV9lChoBkdAb0KwblzU7WgHTWwBaAhHQJr6NKHwgDB1fZQoaAZHQHAlHLq2SdRoB00gAWgIR0Ca+lr+YMOPdX2UKGgGR8ApwVObiIcjaAdNAwFoCEdAmvpvXbuc+nV9lChoBkdAb0UfwqiGnGgHTdkBaAhHQJr8Cx9oexR1fZQoaAZHQG92K94/u9hoB00cAWgIR0Ca/Mp9qk/KdX2UKGgGR0BwRlFz+3pfaAdNKgFoCEdAmwBzGDL8rXV9lChoBkdAa0iVKwpvxmgHTTwBaAhHQJsAgIyCWeJ1fZQoaAZHQHAR+qWC2+hoB01fAWgIR0CbAg2Yv38GdX2UKGgGR0A1cnHvMKTjaAdNCgFoCEdAmwJEcfeUIXV9lChoBkdAb9xvaURnOGgHTT0BaAhHQJsC5jmSyMV1fZQoaAZHQHEGV7MPjGVoB010AWgIR0CbBJvIfbKzdX2UKGgGR0BwrBQ9A5aNaAdNGgFoCEdAmwZRbwBo3HV9lChoBkdAb184ffXPJWgHTTwBaAhHQJsGZjWkJrt1fZQoaAZHQB4icXm/339oB00nAWgIR0CbCJTINmUXdX2UKGgGR0BvW/HLidauaAdNJwFoCEdAmwioJiRW93V9lChoBkdAcIvdZq20A2gHTSABaAhHQJsKsvlEJBx1fZQoaAZHQHDlX0Gu9vloB01EAmgIR0CbDHaCtihGdX2UKGgGR0BwXnyf+S8raAdNMQFoCEdAmw5UALiMpHV9lChoBkdAYYIxRl6JImgHTegDaAhHQJsPRRuTA311fZQoaAZHQG8DeenQ6ZJoB00uAWgIR0CbD8PuogmrdX2UKGgGR0BweIAo5PuYaAdNGwFoCEdAmxD4vrWy1XV9lChoBkdAcZDzF+/gzmgHTVgBaAhHQJsRYo9cKPZ1fZQoaAZHQHErcE7nxKBoB01SAWgIR0CbEdFYuCf6dX2UKGgGR0A0WixmkFfRaAdNEwFoCEdAmxH6xkd3jnV9lChoBkdAcHeMkyDZlGgHTSYBaAhHQJsSldhRZU11fZQoaAZHQGw5GY8dPtVoB02+AWgIR0CbFAN83MpxdX2UKGgGR0BwY9MEidJ8aAdNKwFoCEdAmxSO1OTJQ3V9lChoBkdAcT1t6HCXQmgHTUABaAhHQJsXbeHi3od1fZQoaAZHQB/F9Brvb49oB0v5aAhHQJsYDNmlImR1fZQoaAZHQG5BMhHLA59oB02dAmgIR0CbGUgccU/OdX2UKGgGR0BtJLuIAOriaAdNUwFoCEdAmxoVSbYsd3V9lChoBkdAbDsrNnoPkWgHTTABaAhHQJsb4Tg2qDN1fZQoaAZHQHACnjABT4toB00/AWgIR0CbHBq+ajN7dX2UKGgGR0Bw9MkHD766aAdNFgFoCEdAmx0VUADJVHV9lChoBkdAcKs0JWvKU2gHTSwBaAhHQJsd1C2MKkV1fZQoaAZHQG8tww0waitoB01CAWgIR0CbH8J2t+1CdX2UKGgGR0BvEP7Lt/nXaAdNbgFoCEdAmx/PaHsTnXV9lChoBkdAYeN89fTkQ2gHTegDaAhHQJsgFwzch1V1fZQoaAZHQGtVCGWUr09oB000AWgIR0CbINDM/yG0dX2UKGgGR0BuL6oIfKZEaAdNfgJoCEdAmyKiPMjeK3V9lChoBkdAcZbWKdhAnmgHTRwBaAhHQJskBeKKpDN1fZQoaAZHQHBQXoHLRrtoB001AWgIR0CbJHV/MGHIdX2UKGgGR0BjpFQhwEQoaAdN6ANoCEdAmyUUzGgi/3V9lChoBkdAbttGPxQSBmgHTUwBaAhHQJsoOWszVMF1fZQoaAZHQGqT464lQdloB001AmgIR0CbKHn3ta6jdX2UKGgGR0BwWmUaAFxGaAdNMAFoCEdAmyjmGZeAu3V9lChoBkdAcMsAAQxvemgHTSQBaAhHQJsqIl6Z6Ut1fZQoaAZHQGxtrHMlkYpoB005AWgIR0CbKkcvugHvdX2UKGgGR0BwjtuwX668aAdNFQFoCEdAmytPNmlImXV9lChoBkdAbWq5y2hIv2gHTSgBaAhHQJssE5Jbt7d1fZQoaAZHQHDCjcqOLixoB00wAWgIR0CbLKuzhP0qdX2UKGgGR0BwRou27Wd3aAdNowFoCEdAmy1j2FnIyXV9lChoBkdAcYbOnEVFhGgHTXwBaAhHQJswx/4Irvt1fZQoaAZHQG+j19v0h/1oB00iAWgIR0CbMgOnEVFhdX2UKGgGR0BwUNwT/Q0GaAdNRQFoCEdAmzM0JKJ2uHV9lChoBkdAcIq/iYLLIWgHTVYBaAhHQJszkbn5i3J1fZQoaAZHQG3EeaKDTSdoB003AWgIR0CbN7IoVmBfdX2UKGgGR0Bx6NMi8nNQaAdNJgFoCEdAmzk+Yx+KCXV9lChoBke/0JR0lqrR0GgHTRoBaAhHQJs6OjtXxON1fZQoaAZHQHH7cDbJwKloB015AWgIR0CbO3wsGxD9dX2UKGgGR0Bxs6KZUkv9aAdNVQFoCEdAmzvOHWSU1XV9lChoBkdAcUzSv1UVBWgHTUQBaAhHQJs9HVG0/np1fZQoaAZHQHCnyWAwwkBoB004AWgIR0CbPTuanaWYdX2UKGgGR0BwEiSq2jO+aAdNPQFoCEdAmz4xBNVR13V9lChoBkdAa8jos7MgU2gHTSkBaAhHQJtBk2Q4jr11fZQoaAZHQG6DSZSeiBZoB00YAWgIR0CbQa9r433pdX2UKGgGR0BiQBa9sabXaAdN6ANoCEdAm0IRMajveHV9lChoBkdAb07eSjgydmgHTT4BaAhHQJtDhJnQID51fZQoaAZHQG7eDtw71ZloB00pAWgIR0CbRaMZP2wndX2UKGgGR0BvU05n13+uaAdNMwFoCEdAm0c+bd8ArHV9lChoBkdAYYLSrHU+cGgHTegDaAhHQJtHXAAQxvh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (195 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.51599240000002, "std_reward": 15.621220314552074, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-23T06:36:37.423456"}