Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1899.88 +/- 135.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a292623a49d3794146f319f6aca6cfb4b7985c34b5e1f9e28c56765ef70dc549
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f26a68719d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26a6871a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26a6871af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26a6871b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f26a6871c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f26a6871ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26a6871d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26a6871dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f26a6871e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26a6871ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26a6871f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26a6876040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f26a6867f30>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674378181364012261,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALngoT72fhe/vgf5Phj1ij/o5AU+QulxP5JLfb9GfNM9wadYP4IRFL53UI++jDTsPj1JXT7xppK/jmk1PwzqNb+OT/M+Waecv/VLj78BqTk/UpFUv81AEL+R1ew+KgEJwK7jVz+JJwbAVuQDwGFjoL9zIuU+OJwPv4R5/T4GqPM/3iU3P0kBAsAoCwy/7bOJvjJxsr4qYpW/byqJPRMIHED4Fj49J63ov2k8PD9xzMI8eUtNvgjkx78qGvK+ZjC9P8eVU78a+uo8jMNhPk5KOsAMyJe/iScGwCBy+D5hY6C/hIYAPm69XL7mcwo/O6LnP8tPEr9xrNS/uEsfPxp/v7yN61Q/sI9ivB4bID/hY2y/6fWkv/t1xz/JuZk9s7kjwPs8Ob8et5o+Z3u4PpVoFD84rgC/RcxKP5mBg74kn/0/ruNXP4knBsAgcvg+YWOgvwNagj+bOF0/JfZtPU8l9z+mTZc+RjC0u7hd/L7i7X+/OM5UPzTK77vvg7C+jCQewCkiGL4YJ74/fUWNPtmQrD+nLAE9rAkJQG2dtb5GCJy/6dlEv/ZUjr/IdQRA1hqzPgzIl798QfQ+IHL4PuZNTD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAArdac2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9YEOvgAAAABSk+6/AAAAAEE21TwAAAAABT77PwAAAAAHXYs8AAAAAH3D6T8AAAAARC3NvAAAAAAxEOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdQMLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGCI/b0AAAAAkQrvvwAAAAAEo6Q8AAAAABa/8z8AAAAAE8/euwAAAACG4/M/AAAAAJ4OUD0AAAAAtDXavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIT80zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQ2Iq9AAAAAIiU+L8AAAAA9FW2PQAAAABovPY/AAAAAIOL8T0AAAAApy35PwAAAABEuTc7AAAAAP3Q7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHmG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxruSvQAAAABD4Pq/AAAAAEaqdD0AAAAA24rhPwAAAAAlgwm9AAAAAD4K4T8AAAAARHMGPgAAAAB4Eey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwBxpEhJRSMAWyUTegDjAF0lEdApz+3c580DXV9lChoBkdAmx7uEEkjYGgHTegDaAhHQKdBqAjps411fZQoaAZHQJsb4cPvrnloB03oA2gIR0CnSRxb8m8edX2UKGgGR0CcR5HARChOaAdN6ANoCEdAp0oQPTXrdHV9lChoBkdAkVt9JjDsMWgHTegDaAhHQKdL2gB91EF1fZQoaAZHQJ3ioHLRrrRoB03oA2gIR0CnTdMfzSThdX2UKGgGR0CVPGySmqHXaAdN6ANoCEdAp1VBM+NcW3V9lChoBkdAl2wl7+kxh2gHTegDaAhHQKdWNlijL0V1fZQoaAZHQJjNy1Vo6CFoB03oA2gIR0CnV9bcO9WZdX2UKGgGR0CZRA0btJFtaAdN6ANoCEdAp1noTdtVJnV9lChoBkdAm7RGVZ9uxmgHTegDaAhHQKdhXOcDr7h1fZQoaAZHQJstM3hn8KpoB03oA2gIR0CnYlSon8badX2UKGgGR0CbJl3dKujiaAdN6ANoCEdAp2P5uyeI23V9lChoBkdAnD/l67dzn2gHTegDaAhHQKdl/MA3kxR1fZQoaAZHQJp+MlzEJjVoB03oA2gIR0CnbYaxPfsNdX2UKGgGR0CdqwtXPqs2aAdN6ANoCEdAp25yPwNLDnV9lChoBkdAlXXI+jdpI2gHTegDaAhHQKdwFrLyMDR1fZQoaAZHQJz75iTdLxtoB03oA2gIR0CncgsMiKR/dX2UKGgGR0Cc9OH4XXRPaAdN6ANoCEdAp3lPgP3BYXV9lChoBkdAm7LSbYsd1mgHTegDaAhHQKd6NZwGW2R1fZQoaAZHQJfwLftQbddoB03oA2gIR0Cne9UdBBzFdX2UKGgGR0CaY63iJfpmaAdN6ANoCEdAp33AvN/vv3V9lChoBkdAnrxqMFUyYWgHTegDaAhHQKeE6/KyOaR1fZQoaAZHQJuurcuanaZoB03oA2gIR0CnhdgRkEs8dX2UKGgGR0CdwSHM2WIHaAdN6ANoCEdAp4d4TdtVJnV9lChoBkdAnIf8Yht+C2gHTegDaAhHQKeJg7tAs051fZQoaAZHQJzSseLehwloB03oA2gIR0CnkRQkona4dX2UKGgGR0CaOxWKuSwGaAdN6ANoCEdAp5IG3MINVnV9lChoBkdAnGzKnBLwnmgHTegDaAhHQKeTuAU+LWJ1fZQoaAZHQJxeSc6Nly1oB03oA2gIR0CnlbqB/ZuidX2UKGgGR0CeO5gy/KyOaAdN6ANoCEdAp50caIeo1nV9lChoBkdAm4drrX18LWgHTegDaAhHQKeeBqfvnbJ1fZQoaAZHQJitp1wHZ9NoB03oA2gIR0Cnn55DzAerdX2UKGgGR0CfsEEHt4RmaAdN6ANoCEdAp6GjNpudgHV9lChoBkdAmEtwR9PUKGgHTegDaAhHQKepM41gpjN1fZQoaAZHQJ+CXKvFFUhoB03oA2gIR0Cnqh5fD1oQdX2UKGgGR0CeVYgte2NOaAdN6ANoCEdAp6u+Tq0MPXV9lChoBkdAnxWDgIhQnGgHTegDaAhHQKettg4wRGt1fZQoaAZHQJrRcMuvlltoB03oA2gIR0CntQf7BO58dX2UKGgGR0CbrghbGFSLaAdN6ANoCEdAp7X+5e7cwnV9lChoBkdAmqM/0Eovz2gHTegDaAhHQKe3sljVhCt1fZQoaAZHQJm9kQyylepoB03oA2gIR0CnubCoCMgmdX2UKGgGR0CcdwpR4yGjaAdN6ANoCEdAp8EWw7kn1HV9lChoBkdAmU2poXbdrWgHTegDaAhHQKfCCcXFcY91fZQoaAZHQJ1Wos5GSZBoB03oA2gIR0Cnw6TSCvovdX2UKGgGR0CaYUKYRdyDaAdN6ANoCEdAp8WdDx9XtHV9lChoBkdAnCPYRNATqWgHTegDaAhHQKfNNyQxN7B1fZQoaAZHQJqr1Gz8gp1oB03oA2gIR0CnziihFmWddX2UKGgGR0Ca2EKZDzAfaAdN6ANoCEdAp8/XBzmwJXV9lChoBkdAmmUmPkq+amgHTegDaAhHQKfR0mBvrGB1fZQoaAZHQJmvx7laKUFoB03oA2gIR0Cn2UBdt2s8dX2UKGgGR0CcNbVHFxXGaAdN6ANoCEdAp9opTCLuQnV9lChoBkdAndTTND+irWgHTegDaAhHQKfbwmu1WsB1fZQoaAZHQJ+Vt0yP+4toB03oA2gIR0Cn3b6T4cm0dX2UKGgGR0Cd+LkrPMSsaAdN6ANoCEdAp+U35aePJnV9lChoBkdAnaZBIJ7b+WgHTegDaAhHQKfmGnmaH9F1fZQoaAZHQJl+zUDuBtloB03oA2gIR0Cn57Go73fydX2UKGgGR0CdqRVKwpvxaAdN6ANoCEdAp+mtWuHN5nV9lChoBkdAmnCklu3tr2gHTegDaAhHQKfxMK+BYmt1fZQoaAZHQJvUx8BuGbloB03oA2gIR0Cn8iJJGvwFdX2UKGgGR0CaiWPDHfdiaAdN6ANoCEdAp/O+KwY+CHV9lChoBkdAmUx/iYLLIWgHTegDaAhHQKf1rO2RaHN1fZQoaAZHQJfx6DpTuOVoB03oA2gIR0Cn/S9deIEbdX2UKGgGR0CXLDEDQqqfaAdN6ANoCEdAp/4nuNPxhHV9lChoBkdAm4iHGjsUqWgHTegDaAhHQKf/y+pOvdN1fZQoaAZHQJyQlozvZyxoB03oA2gIR0CoAdFa8pTddX2UKGgGR0CB4ZtzCDVZaAdN6ANoCEdAqAloXhwVCXV9lChoBkdAnuHfsu3+dmgHTegDaAhHQKgKX1schkl1fZQoaAZHQJ+b+ojv/ipoB03oA2gIR0CoDBvSUkfLdX2UKGgGR0Ca9SiqABkqaAdN6ANoCEdAqA4ZjlPrOnV9lChoBkdAm1fWh24d62gHTegDaAhHQKgVlv0h/y51fZQoaAZHQJse3GkvboNoB03oA2gIR0CoFolfReC1dX2UKGgGR0Cdfns2eg+RaAdN6ANoCEdAqBgvqC6H03V9lChoBkdAnYRLHAAQx2gHTegDaAhHQKgaMB1cMVl1fZQoaAZHQJcFFPykKu1oB03oA2gIR0CoIbh3zMA4dX2UKGgGR0CTQ+yIHkcTaAdN6ANoCEdAqCKvP5YYBXV9lChoBkdAmwd0E5hjOWgHTegDaAhHQKgkYhfShJ11fZQoaAZHQJhBVhw2l2xoB03oA2gIR0CoJlpVsDW9dX2UKGgGR0CZAhZ13dKvaAdN6ANoCEdAqC3kI7eVLXV9lChoBkdAnt7o46wMY2gHTegDaAhHQKgu3EE1VHZ1fZQoaAZHQJxwukTHsC1oB03oA2gIR0CoMISrHU+cdX2UKGgGR0CZ9MJ5mh/RaAdN6ANoCEdAqDKFFWn0kHV9lChoBkdAmM3AVfu1GGgHTegDaAhHQKg6Da37UG51fZQoaAZHQJwD+Vu76HloB03oA2gIR0CoOvszMzMzdX2UKGgGR0Cc8/ZpSJj2aAdN6ANoCEdAqDyhBC2MKnV9lChoBkdAmnAD6zmfXmgHTegDaAhHQKg+opwS8J51fZQoaAZHQJ0vE6ySmqJoB03oA2gIR0CoRj4IBzV+dX2UKGgGR0Cb4H/qgRK6aAdN6ANoCEdAqEcze40/GHV9lChoBkdAmelkBfa6BmgHTegDaAhHQKhI5qj8DSx1fZQoaAZHQJka7yQPqcFoB03oA2gIR0CoStu6ErXldX2UKGgGR0Cd3qV6eGwiaAdN6ANoCEdAqFJsOiFj/nV9lChoBkdAnFP9nkDIR2gHTegDaAhHQKhTXMeOn2t1fZQoaAZHQJvfyTwDvE1oB03oA2gIR0CoVQG1YyO8dX2UKGgGR0CesFRfF72MaAdN6ANoCEdAqFb+QfZElXV9lChoBkdAnbN+g+Qlr2gHTegDaAhHQKhenZdv8651fZQoaAZHQJ5GXFDOTq1oB03oA2gIR0CoX5DUmUnpdX2UKGgGR0CfKiw1R+BpaAdN6ANoCEdAqGE35zo2XXV9lChoBkdAnanzqbBoEmgHTegDaAhHQKhjK89Oh011fZQoaAZHQJ7XNtGd7OVoB03oA2gIR0CoasEyDZlGdX2UKGgGR0Cfd+SpzcREaAdN6ANoCEdAqGuuAd4mkXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8d64b45c6f79f8c00d797f11cf32187bc1cc10f43031e3625352b18b412446
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f715c1656f12f946f28fbac7325663f990366b5074ba58ddb4b4ac815d28897
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f26a68719d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26a6871a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26a6871af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26a6871b80>", "_build": "<function ActorCriticPolicy._build at 0x7f26a6871c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f26a6871ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26a6871d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26a6871dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f26a6871e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26a6871ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26a6871f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26a6876040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f26a6867f30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674378181364012261, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALngoT72fhe/vgf5Phj1ij/o5AU+QulxP5JLfb9GfNM9wadYP4IRFL53UI++jDTsPj1JXT7xppK/jmk1PwzqNb+OT/M+Waecv/VLj78BqTk/UpFUv81AEL+R1ew+KgEJwK7jVz+JJwbAVuQDwGFjoL9zIuU+OJwPv4R5/T4GqPM/3iU3P0kBAsAoCwy/7bOJvjJxsr4qYpW/byqJPRMIHED4Fj49J63ov2k8PD9xzMI8eUtNvgjkx78qGvK+ZjC9P8eVU78a+uo8jMNhPk5KOsAMyJe/iScGwCBy+D5hY6C/hIYAPm69XL7mcwo/O6LnP8tPEr9xrNS/uEsfPxp/v7yN61Q/sI9ivB4bID/hY2y/6fWkv/t1xz/JuZk9s7kjwPs8Ob8et5o+Z3u4PpVoFD84rgC/RcxKP5mBg74kn/0/ruNXP4knBsAgcvg+YWOgvwNagj+bOF0/JfZtPU8l9z+mTZc+RjC0u7hd/L7i7X+/OM5UPzTK77vvg7C+jCQewCkiGL4YJ74/fUWNPtmQrD+nLAE9rAkJQG2dtb5GCJy/6dlEv/ZUjr/IdQRA1hqzPgzIl798QfQ+IHL4PuZNTD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAArdac2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9YEOvgAAAABSk+6/AAAAAEE21TwAAAAABT77PwAAAAAHXYs8AAAAAH3D6T8AAAAARC3NvAAAAAAxEOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdQMLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGCI/b0AAAAAkQrvvwAAAAAEo6Q8AAAAABa/8z8AAAAAE8/euwAAAACG4/M/AAAAAJ4OUD0AAAAAtDXavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIT80zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQ2Iq9AAAAAIiU+L8AAAAA9FW2PQAAAABovPY/AAAAAIOL8T0AAAAApy35PwAAAABEuTc7AAAAAP3Q7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHHmG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxruSvQAAAABD4Pq/AAAAAEaqdD0AAAAA24rhPwAAAAAlgwm9AAAAAD4K4T8AAAAARHMGPgAAAAB4Eey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwBxpEhJRSMAWyUTegDjAF0lEdApz+3c580DXV9lChoBkdAmx7uEEkjYGgHTegDaAhHQKdBqAjps411fZQoaAZHQJsb4cPvrnloB03oA2gIR0CnSRxb8m8edX2UKGgGR0CcR5HARChOaAdN6ANoCEdAp0oQPTXrdHV9lChoBkdAkVt9JjDsMWgHTegDaAhHQKdL2gB91EF1fZQoaAZHQJ3ioHLRrrRoB03oA2gIR0CnTdMfzSThdX2UKGgGR0CVPGySmqHXaAdN6ANoCEdAp1VBM+NcW3V9lChoBkdAl2wl7+kxh2gHTegDaAhHQKdWNlijL0V1fZQoaAZHQJjNy1Vo6CFoB03oA2gIR0CnV9bcO9WZdX2UKGgGR0CZRA0btJFtaAdN6ANoCEdAp1noTdtVJnV9lChoBkdAm7RGVZ9uxmgHTegDaAhHQKdhXOcDr7h1fZQoaAZHQJstM3hn8KpoB03oA2gIR0CnYlSon8badX2UKGgGR0CbJl3dKujiaAdN6ANoCEdAp2P5uyeI23V9lChoBkdAnD/l67dzn2gHTegDaAhHQKdl/MA3kxR1fZQoaAZHQJp+MlzEJjVoB03oA2gIR0CnbYaxPfsNdX2UKGgGR0CdqwtXPqs2aAdN6ANoCEdAp25yPwNLDnV9lChoBkdAlXXI+jdpI2gHTegDaAhHQKdwFrLyMDR1fZQoaAZHQJz75iTdLxtoB03oA2gIR0CncgsMiKR/dX2UKGgGR0Cc9OH4XXRPaAdN6ANoCEdAp3lPgP3BYXV9lChoBkdAm7LSbYsd1mgHTegDaAhHQKd6NZwGW2R1fZQoaAZHQJfwLftQbddoB03oA2gIR0Cne9UdBBzFdX2UKGgGR0CaY63iJfpmaAdN6ANoCEdAp33AvN/vv3V9lChoBkdAnrxqMFUyYWgHTegDaAhHQKeE6/KyOaR1fZQoaAZHQJuurcuanaZoB03oA2gIR0CnhdgRkEs8dX2UKGgGR0CdwSHM2WIHaAdN6ANoCEdAp4d4TdtVJnV9lChoBkdAnIf8Yht+C2gHTegDaAhHQKeJg7tAs051fZQoaAZHQJzSseLehwloB03oA2gIR0CnkRQkona4dX2UKGgGR0CaOxWKuSwGaAdN6ANoCEdAp5IG3MINVnV9lChoBkdAnGzKnBLwnmgHTegDaAhHQKeTuAU+LWJ1fZQoaAZHQJxeSc6Nly1oB03oA2gIR0CnlbqB/ZuidX2UKGgGR0CeO5gy/KyOaAdN6ANoCEdAp50caIeo1nV9lChoBkdAm4drrX18LWgHTegDaAhHQKeeBqfvnbJ1fZQoaAZHQJitp1wHZ9NoB03oA2gIR0Cnn55DzAerdX2UKGgGR0CfsEEHt4RmaAdN6ANoCEdAp6GjNpudgHV9lChoBkdAmEtwR9PUKGgHTegDaAhHQKepM41gpjN1fZQoaAZHQJ+CXKvFFUhoB03oA2gIR0Cnqh5fD1oQdX2UKGgGR0CeVYgte2NOaAdN6ANoCEdAp6u+Tq0MPXV9lChoBkdAnxWDgIhQnGgHTegDaAhHQKettg4wRGt1fZQoaAZHQJrRcMuvlltoB03oA2gIR0CntQf7BO58dX2UKGgGR0CbrghbGFSLaAdN6ANoCEdAp7X+5e7cwnV9lChoBkdAmqM/0Eovz2gHTegDaAhHQKe3sljVhCt1fZQoaAZHQJm9kQyylepoB03oA2gIR0CnubCoCMgmdX2UKGgGR0CcdwpR4yGjaAdN6ANoCEdAp8EWw7kn1HV9lChoBkdAmU2poXbdrWgHTegDaAhHQKfCCcXFcY91fZQoaAZHQJ1Wos5GSZBoB03oA2gIR0Cnw6TSCvovdX2UKGgGR0CaYUKYRdyDaAdN6ANoCEdAp8WdDx9XtHV9lChoBkdAnCPYRNATqWgHTegDaAhHQKfNNyQxN7B1fZQoaAZHQJqr1Gz8gp1oB03oA2gIR0CnziihFmWddX2UKGgGR0Ca2EKZDzAfaAdN6ANoCEdAp8/XBzmwJXV9lChoBkdAmmUmPkq+amgHTegDaAhHQKfR0mBvrGB1fZQoaAZHQJmvx7laKUFoB03oA2gIR0Cn2UBdt2s8dX2UKGgGR0CcNbVHFxXGaAdN6ANoCEdAp9opTCLuQnV9lChoBkdAndTTND+irWgHTegDaAhHQKfbwmu1WsB1fZQoaAZHQJ+Vt0yP+4toB03oA2gIR0Cn3b6T4cm0dX2UKGgGR0Cd+LkrPMSsaAdN6ANoCEdAp+U35aePJnV9lChoBkdAnaZBIJ7b+WgHTegDaAhHQKfmGnmaH9F1fZQoaAZHQJl+zUDuBtloB03oA2gIR0Cn57Go73fydX2UKGgGR0CdqRVKwpvxaAdN6ANoCEdAp+mtWuHN5nV9lChoBkdAmnCklu3tr2gHTegDaAhHQKfxMK+BYmt1fZQoaAZHQJvUx8BuGbloB03oA2gIR0Cn8iJJGvwFdX2UKGgGR0CaiWPDHfdiaAdN6ANoCEdAp/O+KwY+CHV9lChoBkdAmUx/iYLLIWgHTegDaAhHQKf1rO2RaHN1fZQoaAZHQJfx6DpTuOVoB03oA2gIR0Cn/S9deIEbdX2UKGgGR0CXLDEDQqqfaAdN6ANoCEdAp/4nuNPxhHV9lChoBkdAm4iHGjsUqWgHTegDaAhHQKf/y+pOvdN1fZQoaAZHQJyQlozvZyxoB03oA2gIR0CoAdFa8pTddX2UKGgGR0CB4ZtzCDVZaAdN6ANoCEdAqAloXhwVCXV9lChoBkdAnuHfsu3+dmgHTegDaAhHQKgKX1schkl1fZQoaAZHQJ+b+ojv/ipoB03oA2gIR0CoDBvSUkfLdX2UKGgGR0Ca9SiqABkqaAdN6ANoCEdAqA4ZjlPrOnV9lChoBkdAm1fWh24d62gHTegDaAhHQKgVlv0h/y51fZQoaAZHQJse3GkvboNoB03oA2gIR0CoFolfReC1dX2UKGgGR0Cdfns2eg+RaAdN6ANoCEdAqBgvqC6H03V9lChoBkdAnYRLHAAQx2gHTegDaAhHQKgaMB1cMVl1fZQoaAZHQJcFFPykKu1oB03oA2gIR0CoIbh3zMA4dX2UKGgGR0CTQ+yIHkcTaAdN6ANoCEdAqCKvP5YYBXV9lChoBkdAmwd0E5hjOWgHTegDaAhHQKgkYhfShJ11fZQoaAZHQJhBVhw2l2xoB03oA2gIR0CoJlpVsDW9dX2UKGgGR0CZAhZ13dKvaAdN6ANoCEdAqC3kI7eVLXV9lChoBkdAnt7o46wMY2gHTegDaAhHQKgu3EE1VHZ1fZQoaAZHQJxwukTHsC1oB03oA2gIR0CoMISrHU+cdX2UKGgGR0CZ9MJ5mh/RaAdN6ANoCEdAqDKFFWn0kHV9lChoBkdAmM3AVfu1GGgHTegDaAhHQKg6Da37UG51fZQoaAZHQJwD+Vu76HloB03oA2gIR0CoOvszMzMzdX2UKGgGR0Cc8/ZpSJj2aAdN6ANoCEdAqDyhBC2MKnV9lChoBkdAmnAD6zmfXmgHTegDaAhHQKg+opwS8J51fZQoaAZHQJ0vE6ySmqJoB03oA2gIR0CoRj4IBzV+dX2UKGgGR0Cb4H/qgRK6aAdN6ANoCEdAqEcze40/GHV9lChoBkdAmelkBfa6BmgHTegDaAhHQKhI5qj8DSx1fZQoaAZHQJka7yQPqcFoB03oA2gIR0CoStu6ErXldX2UKGgGR0Cd3qV6eGwiaAdN6ANoCEdAqFJsOiFj/nV9lChoBkdAnFP9nkDIR2gHTegDaAhHQKhTXMeOn2t1fZQoaAZHQJvfyTwDvE1oB03oA2gIR0CoVQG1YyO8dX2UKGgGR0CesFRfF72MaAdN6ANoCEdAqFb+QfZElXV9lChoBkdAnbN+g+Qlr2gHTegDaAhHQKhenZdv8651fZQoaAZHQJ5GXFDOTq1oB03oA2gIR0CoX5DUmUnpdX2UKGgGR0CfKiw1R+BpaAdN6ANoCEdAqGE35zo2XXV9lChoBkdAnanzqbBoEmgHTegDaAhHQKhjK89Oh011fZQoaAZHQJ7XNtGd7OVoB03oA2gIR0CoasEyDZlGdX2UKGgGR0Cfd+SpzcREaAdN6ANoCEdAqGuuAd4mkXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64fcf78598efdb14a1a5a501d1977cf7237b42a1e1516bf236e968504dc0e38d
|
3 |
+
size 1094932
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1899.8831996562308, "std_reward": 135.07762645975356, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T10:19:14.211641"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce36e829ecacc2db199454cea5faa34929826c074dafef133d9ecacf4f77df37
|
3 |
+
size 2136
|