rahul-t-p commited on
Commit
9d96616
1 Parent(s): 680b2ec

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.31 +/- 17.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94e4cf4670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94e4cf4700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94e4cf4790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94e4cf4820>", "_build": "<function ActorCriticPolicy._build at 0x7f94e4cf48b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f94e4cf4940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94e4cf49d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94e4cf4a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f94e4cf4af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94e4cf4b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94e4cf4c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94e4cf4ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f94e4ce08a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673864434613355509, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNUi73hErs57MIQtDEFjq5ZYkU7Yrm9MwAAgD8AAIA/zQqXPXvClbpQX9u62sedte0qv7pFMv05AACAPwAAgD9m6fi8vWiYPzQBvrsu2ca+BJ86vSZQC7wAAAAAAAAAAGavCz7SFpw/XvLUPjd9zL4NVBc+sW4VPgAAAAAAAAAAM1SrPTFlFD4voIS9QLBGvj2upzz2XXY8AAAAAAAAAABND6c9ig0xPlLrYz273Jm+vLioPcxclL0AAAAAAAAAAPreAT5HCyE/vrNPPDE8nr62XYM9yoQYvQAAAAAAAAAAZvyKPOLAZD+DfC8+vtK0vv7FHT0IN5c9AAAAAAAAAAAaLtY9UoAIP9yakr13uKS+ibumu/nLhjwAAAAAAAAAAECvnj3s6cC5W+DdtLOYEa9Ao4c6eUQnNAAAgD8AAIA/ZruiPfZsMLomiao24mnMMU8mcjprncW1AACAPwAAgD+zOXO9w3k9unAJNLtbsaw5JR9OOzAboTkAAIA/AACAP1o4oD3DeQe6xqaqu/3alDhWtYi7myo0OAAAgD8AAIA/mgqiPVJxgbs2Al28EayhPEpNwjwhwIm9AACAPwAAAABTjAQ+P4V1P/LyKD39Tai+EvCmPdAGeL0AAAAAAAAAAOYxSz0puD268so8uT5FX7Q2dno6Pd9VOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI26LMBll/cECUhpRSlIwBbJRNQwGMAXSUR0CU+i7W/ag3dX2UKGgGaAloD0MIzVmfcszBcUCUhpRSlGgVTVgBaBZHQJT7ICFK02N1fZQoaAZoCWgPQwhWKxN+Kd1sQJSGlFKUaBVNJgFoFkdAlPvMD4gzQHV9lChoBmgJaA9DCEmfVtEfR3JAlIaUUpRoFU0pAWgWR0CU/ncebNKRdX2UKGgGaAloD0MITFDDt3AJcECUhpRSlGgVTRgBaBZHQJT/gfcN6Pd1fZQoaAZoCWgPQwgHeNLC5bJxQJSGlFKUaBVNSAFoFkdAlQAEu+RHPXV9lChoBmgJaA9DCL2NzY6UO3FAlIaUUpRoFU1vAWgWR0CVABBMSK3vdX2UKGgGaAloD0MIvth78cXvbUCUhpRSlGgVTUgBaBZHQJUAN4keIVN1fZQoaAZoCWgPQwiWeEDZ1LlyQJSGlFKUaBVNFwFoFkdAlQI4BNmDlHV9lChoBmgJaA9DCN4ehIB8e21AlIaUUpRoFU0cAWgWR0CVAwAaef7KdX2UKGgGaAloD0MI/wQXK2qeT0CUhpRSlGgVS81oFkdAlQMdOqNp/XV9lChoBmgJaA9DCLlSz4LQb2xAlIaUUpRoFU0tAWgWR0CVAybh3qzJdX2UKGgGaAloD0MICmr4FhYXc0CUhpRSlGgVS/toFkdAlQO1hgE2YXV9lChoBmgJaA9DCMlxp3Qw3XFAlIaUUpRoFU03AWgWR0CVBUOPNmlJdX2UKGgGaAloD0MIl445z5gicUCUhpRSlGgVTSoCaBZHQJUGTP8hs691fZQoaAZoCWgPQwgvFobI6flsQJSGlFKUaBVNSgFoFkdAlQamdEsrd3V9lChoBmgJaA9DCC18fa2LqHBAlIaUUpRoFU0hAWgWR0CVBtOVgQYldX2UKGgGaAloD0MIqKYk63CXcECUhpRSlGgVTRkBaBZHQJUJC09hZyN1fZQoaAZoCWgPQwh39SoyOgpHQJSGlFKUaBVLyGgWR0CVHtszl90BdX2UKGgGaAloD0MIY9AJoQNTcUCUhpRSlGgVTS8BaBZHQJUfyeqaPS51fZQoaAZoCWgPQwjZfFwb6gxwQJSGlFKUaBVNRwFoFkdAlSBIC+10DHV9lChoBmgJaA9DCOMXXknyO29AlIaUUpRoFU1TAWgWR0CVIYfek56udX2UKGgGaAloD0MI/wQXK2o8O0CUhpRSlGgVS81oFkdAlSGTxb0OE3V9lChoBmgJaA9DCALTad2G8nJAlIaUUpRoFU18AWgWR0CVIwVGkN4JdX2UKGgGaAloD0MITgrzHudybkCUhpRSlGgVTYoBaBZHQJUmVWmxdIJ1fZQoaAZoCWgPQwjJHTaRWa9xQJSGlFKUaBVNFAFoFkdAlSZuLrHEM3V9lChoBmgJaA9DCC+mme51unFAlIaUUpRoFU2CAWgWR0CVJ8bJwKjSdX2UKGgGaAloD0MIdcdim1S1bECUhpRSlGgVTUQBaBZHQJUoNFSbYsd1fZQoaAZoCWgPQwhZEwt8RQFxQJSGlFKUaBVNXANoFkdAlSiDfFaStHV9lChoBmgJaA9DCFw8vOeAB3FAlIaUUpRoFU2xAWgWR0CVKPvKEFnqdX2UKGgGaAloD0MIuoeE7/2IcECUhpRSlGgVTVABaBZHQJUpTMwDeTF1fZQoaAZoCWgPQwjcfvlkRSltQJSGlFKUaBVNIQFoFkdAlSn1+/gzg3V9lChoBmgJaA9DCKPLm8M1tXJAlIaUUpRoFU0XAWgWR0CVKtpRoAXEdX2UKGgGaAloD0MIY15HHLIwX0CUhpRSlGgVTegDaBZHQJUs+hSLqD91fZQoaAZoCWgPQwg0R1Z+2VlwQJSGlFKUaBVNRgFoFkdAlS31jNIK+nV9lChoBmgJaA9DCJDdBUpK53JAlIaUUpRoFU05AWgWR0CVMKjv/io9dX2UKGgGaAloD0MIG/UQje4RcUCUhpRSlGgVTaACaBZHQJUz2fI0ZWJ1fZQoaAZoCWgPQwi1M0xtabBxQJSGlFKUaBVNuQFoFkdAlTWRZZB9kXV9lChoBmgJaA9DCG75SEq6GXBAlIaUUpRoFU37AWgWR0CVN6OyVv/BdX2UKGgGaAloD0MI+8kYH2aFb0CUhpRSlGgVTYQBaBZHQJU43DAJswd1fZQoaAZoCWgPQwhcWg2J+1dtQJSGlFKUaBVNUwFoFkdAlTmzo2XLNnV9lChoBmgJaA9DCDQr24f8GXFAlIaUUpRoFUv+aBZHQJU5wYEW69V1fZQoaAZoCWgPQwgjMqzijahuQJSGlFKUaBVNSwFoFkdAlTocvugHvHV9lChoBmgJaA9DCAA3ixcLmnFAlIaUUpRoFU2IAWgWR0CVOooegctHdX2UKGgGaAloD0MIMUJ4tHFCcECUhpRSlGgVTYIBaBZHQJU7cjKPn0V1fZQoaAZoCWgPQwgZrDjVGqxwQJSGlFKUaBVNqAFoFkdAlTwoGY8dP3V9lChoBmgJaA9DCGKga19AoG1AlIaUUpRoFU2hAWgWR0CVPCidJ8OTdX2UKGgGaAloD0MIn3O366XQcECUhpRSlGgVTYIBaBZHQJU/51vES/V1fZQoaAZoCWgPQwiCxHb3wPFxQJSGlFKUaBVNSQJoFkdAlUDlI3BHkXV9lChoBmgJaA9DCJDXg0lxcHJAlIaUUpRoFU0XAWgWR0CVQgkhA4XGdX2UKGgGaAloD0MIKChFK7dNcUCUhpRSlGgVTTgBaBZHQJVCL1L8Jld1fZQoaAZoCWgPQwgzaykg7VBvQJSGlFKUaBVNDAFoFkdAlUMzRYzSC3V9lChoBmgJaA9DCJrQJLGkGW1AlIaUUpRoFU2WAWgWR0CVQ5XtjTa1dX2UKGgGaAloD0MIN92yQ3wGcUCUhpRSlGgVTSMBaBZHQJVF4woLG711fZQoaAZoCWgPQwiTcvc5PudsQJSGlFKUaBVNWwFoFkdAlUh6zJIUanV9lChoBmgJaA9DCN0Gtd8awXFAlIaUUpRoFU0oAWgWR0CVSNfG+9J0dX2UKGgGaAloD0MIxQJf0e3YcECUhpRSlGgVTW0BaBZHQJVLdmBe5Wl1fZQoaAZoCWgPQwg+7IUCdthwQJSGlFKUaBVNpQFoFkdAlUuELH+6y3V9lChoBmgJaA9DCIsyG2SS82xAlIaUUpRoFU3VAmgWR0CVYM4EOiFkdX2UKGgGaAloD0MIZ195kB68bkCUhpRSlGgVTaQBaBZHQJVg3C/Glyl1fZQoaAZoCWgPQwj4a7JGvbNuQJSGlFKUaBVNegFoFkdAlWExLkCFK3V9lChoBmgJaA9DCDVfJR+7gHFAlIaUUpRoFU0XAWgWR0CVYTHT7VJ+dX2UKGgGaAloD0MIZf1mYjoPZECUhpRSlGgVTegDaBZHQJVjE0O3DvV1fZQoaAZoCWgPQwjtm/urR5FwQJSGlFKUaBVNCAFoFkdAlWO95D7ZWnV9lChoBmgJaA9DCGDI6laP4XFAlIaUUpRoFU39AWgWR0CVZIj94u9OdX2UKGgGaAloD0MIfotOltpgckCUhpRSlGgVTVcBaBZHQJVma0iQkop1fZQoaAZoCWgPQwjaVrPOuGlyQJSGlFKUaBVNhgFoFkdAlWd0MgEEDHV9lChoBmgJaA9DCKX0TC+xbnBAlIaUUpRoFU2wAWgWR0CVaSh11W8zdX2UKGgGaAloD0MIXb9gN+wocUCUhpRSlGgVTScBaBZHQJVpqtPpIMB1fZQoaAZoCWgPQwj12JYBp2FwQJSGlFKUaBVNDwFoFkdAlWq+UpuuR3V9lChoBmgJaA9DCOcXJejv3XFAlIaUUpRoFUv4aBZHQJVqyOmzjWF1fZQoaAZoCWgPQwhtqYO8XhlwQJSGlFKUaBVNIAJoFkdAlWzYEwFkhHV9lChoBmgJaA9DCBwj2SMUXnFAlIaUUpRoFU0CAWgWR0CVbcczZYgadX2UKGgGaAloD0MIvHfUmBBvcECUhpRSlGgVTc0BaBZHQJVuKHvc8DB1fZQoaAZoCWgPQwiXi/hOjGhyQJSGlFKUaBVNSAFoFkdAlW6ZOJtSAHV9lChoBmgJaA9DCNIcWfnl5HBAlIaUUpRoFU21AWgWR0CVb2DQZ4wAdX2UKGgGaAloD0MIafzCK8mqcUCUhpRSlGgVTXUBaBZHQJVwUKlYU351fZQoaAZoCWgPQwj752nAIGRsQJSGlFKUaBVNYQFoFkdAlXNEWIoE0XV9lChoBmgJaA9DCGkCRSyiF3BAlIaUUpRoFU3LAWgWR0CVc5MmF8G+dX2UKGgGaAloD0MI73GmCdtFTkCUhpRSlGgVS9poFkdAlXPYgvDgqHV9lChoBmgJaA9DCMpwPJ9BfnJAlIaUUpRoFU1PAWgWR0CVdYIhyKekdX2UKGgGaAloD0MImGvRArS3cECUhpRSlGgVTY8BaBZHQJV6ltALRa51fZQoaAZoCWgPQwiZ02UxcW9wQJSGlFKUaBVNgwFoFkdAlXqaLXL/0nV9lChoBmgJaA9DCHdM3ZUdb3JAlIaUUpRoFU0oAWgWR0CVe0W/rSmZdX2UKGgGaAloD0MIETl9PV9fcUCUhpRSlGgVTWABaBZHQJV8n1Gsmv51fZQoaAZoCWgPQwiPOGQD6Q1vQJSGlFKUaBVNDgFoFkdAlXzX/Pw/gXV9lChoBmgJaA9DCE/OUNwxEHNAlIaUUpRoFU2cAWgWR0CVfVCu2Zy/dX2UKGgGaAloD0MIP3RBfcsFbkCUhpRSlGgVTbICaBZHQJV9pAyEcsF1fZQoaAZoCWgPQwhywK4mD/JxQJSGlFKUaBVNGQJoFkdAlX5lgH/tIHV9lChoBmgJaA9DCHbgnBElvGpAlIaUUpRoFU19AmgWR0CVf8nYQJ5WdX2UKGgGaAloD0MI3XniOVtDcECUhpRSlGgVTZMBaBZHQJWA7peNT991fZQoaAZoCWgPQwhRbAVNy6FuQJSGlFKUaBVNKgFoFkdAlYH6brkbP3V9lChoBmgJaA9DCAA49uy5BW9AlIaUUpRoFU1mAWgWR0CVhDm7rcCYdX2UKGgGaAloD0MIpRDIJY5HcUCUhpRSlGgVTUYBaBZHQJWE44KhL5B1fZQoaAZoCWgPQwiLNPEOsJNyQJSGlFKUaBVNGwFoFkdAlYhduUD+znV9lChoBmgJaA9DCElpNo9DpnFAlIaUUpRoFU3XAWgWR0CViWPa+N96dX2UKGgGaAloD0MIkq0up8SRcUCUhpRSlGgVTUcBaBZHQJWKJeZ5Rj11fZQoaAZoCWgPQwh/NJwyN7xxQJSGlFKUaBVNIgFoFkdAlYp10Lc9GXV9lChoBmgJaA9DCCnOUUfH6G1AlIaUUpRoFU1oAWgWR0CVi8l9Sde6dX2UKGgGaAloD0MIdqT6zm98cECUhpRSlGgVTVABaBZHQJWMc3m3fAN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af64c0cd1c866114d1b980ec5f809dc5946e1da3e99308c20f2798c05d2c474b
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94e4cf4670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94e4cf4700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94e4cf4790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94e4cf4820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f94e4cf48b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f94e4cf4940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94e4cf49d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94e4cf4a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f94e4cf4af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94e4cf4b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94e4cf4c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94e4cf4ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f94e4ce08a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673864434613355509,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNUi73hErs57MIQtDEFjq5ZYkU7Yrm9MwAAgD8AAIA/zQqXPXvClbpQX9u62sedte0qv7pFMv05AACAPwAAgD9m6fi8vWiYPzQBvrsu2ca+BJ86vSZQC7wAAAAAAAAAAGavCz7SFpw/XvLUPjd9zL4NVBc+sW4VPgAAAAAAAAAAM1SrPTFlFD4voIS9QLBGvj2upzz2XXY8AAAAAAAAAABND6c9ig0xPlLrYz273Jm+vLioPcxclL0AAAAAAAAAAPreAT5HCyE/vrNPPDE8nr62XYM9yoQYvQAAAAAAAAAAZvyKPOLAZD+DfC8+vtK0vv7FHT0IN5c9AAAAAAAAAAAaLtY9UoAIP9yakr13uKS+ibumu/nLhjwAAAAAAAAAAECvnj3s6cC5W+DdtLOYEa9Ao4c6eUQnNAAAgD8AAIA/ZruiPfZsMLomiao24mnMMU8mcjprncW1AACAPwAAgD+zOXO9w3k9unAJNLtbsaw5JR9OOzAboTkAAIA/AACAP1o4oD3DeQe6xqaqu/3alDhWtYi7myo0OAAAgD8AAIA/mgqiPVJxgbs2Al28EayhPEpNwjwhwIm9AACAPwAAAABTjAQ+P4V1P/LyKD39Tai+EvCmPdAGeL0AAAAAAAAAAOYxSz0puD268so8uT5FX7Q2dno6Pd9VOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI26LMBll/cECUhpRSlIwBbJRNQwGMAXSUR0CU+i7W/ag3dX2UKGgGaAloD0MIzVmfcszBcUCUhpRSlGgVTVgBaBZHQJT7ICFK02N1fZQoaAZoCWgPQwhWKxN+Kd1sQJSGlFKUaBVNJgFoFkdAlPvMD4gzQHV9lChoBmgJaA9DCEmfVtEfR3JAlIaUUpRoFU0pAWgWR0CU/ncebNKRdX2UKGgGaAloD0MITFDDt3AJcECUhpRSlGgVTRgBaBZHQJT/gfcN6Pd1fZQoaAZoCWgPQwgHeNLC5bJxQJSGlFKUaBVNSAFoFkdAlQAEu+RHPXV9lChoBmgJaA9DCL2NzY6UO3FAlIaUUpRoFU1vAWgWR0CVABBMSK3vdX2UKGgGaAloD0MIvth78cXvbUCUhpRSlGgVTUgBaBZHQJUAN4keIVN1fZQoaAZoCWgPQwiWeEDZ1LlyQJSGlFKUaBVNFwFoFkdAlQI4BNmDlHV9lChoBmgJaA9DCN4ehIB8e21AlIaUUpRoFU0cAWgWR0CVAwAaef7KdX2UKGgGaAloD0MI/wQXK2qeT0CUhpRSlGgVS81oFkdAlQMdOqNp/XV9lChoBmgJaA9DCLlSz4LQb2xAlIaUUpRoFU0tAWgWR0CVAybh3qzJdX2UKGgGaAloD0MICmr4FhYXc0CUhpRSlGgVS/toFkdAlQO1hgE2YXV9lChoBmgJaA9DCMlxp3Qw3XFAlIaUUpRoFU03AWgWR0CVBUOPNmlJdX2UKGgGaAloD0MIl445z5gicUCUhpRSlGgVTSoCaBZHQJUGTP8hs691fZQoaAZoCWgPQwgvFobI6flsQJSGlFKUaBVNSgFoFkdAlQamdEsrd3V9lChoBmgJaA9DCC18fa2LqHBAlIaUUpRoFU0hAWgWR0CVBtOVgQYldX2UKGgGaAloD0MIqKYk63CXcECUhpRSlGgVTRkBaBZHQJUJC09hZyN1fZQoaAZoCWgPQwh39SoyOgpHQJSGlFKUaBVLyGgWR0CVHtszl90BdX2UKGgGaAloD0MIY9AJoQNTcUCUhpRSlGgVTS8BaBZHQJUfyeqaPS51fZQoaAZoCWgPQwjZfFwb6gxwQJSGlFKUaBVNRwFoFkdAlSBIC+10DHV9lChoBmgJaA9DCOMXXknyO29AlIaUUpRoFU1TAWgWR0CVIYfek56udX2UKGgGaAloD0MI/wQXK2o8O0CUhpRSlGgVS81oFkdAlSGTxb0OE3V9lChoBmgJaA9DCALTad2G8nJAlIaUUpRoFU18AWgWR0CVIwVGkN4JdX2UKGgGaAloD0MITgrzHudybkCUhpRSlGgVTYoBaBZHQJUmVWmxdIJ1fZQoaAZoCWgPQwjJHTaRWa9xQJSGlFKUaBVNFAFoFkdAlSZuLrHEM3V9lChoBmgJaA9DCC+mme51unFAlIaUUpRoFU2CAWgWR0CVJ8bJwKjSdX2UKGgGaAloD0MIdcdim1S1bECUhpRSlGgVTUQBaBZHQJUoNFSbYsd1fZQoaAZoCWgPQwhZEwt8RQFxQJSGlFKUaBVNXANoFkdAlSiDfFaStHV9lChoBmgJaA9DCFw8vOeAB3FAlIaUUpRoFU2xAWgWR0CVKPvKEFnqdX2UKGgGaAloD0MIuoeE7/2IcECUhpRSlGgVTVABaBZHQJUpTMwDeTF1fZQoaAZoCWgPQwjcfvlkRSltQJSGlFKUaBVNIQFoFkdAlSn1+/gzg3V9lChoBmgJaA9DCKPLm8M1tXJAlIaUUpRoFU0XAWgWR0CVKtpRoAXEdX2UKGgGaAloD0MIY15HHLIwX0CUhpRSlGgVTegDaBZHQJUs+hSLqD91fZQoaAZoCWgPQwg0R1Z+2VlwQJSGlFKUaBVNRgFoFkdAlS31jNIK+nV9lChoBmgJaA9DCJDdBUpK53JAlIaUUpRoFU05AWgWR0CVMKjv/io9dX2UKGgGaAloD0MIG/UQje4RcUCUhpRSlGgVTaACaBZHQJUz2fI0ZWJ1fZQoaAZoCWgPQwi1M0xtabBxQJSGlFKUaBVNuQFoFkdAlTWRZZB9kXV9lChoBmgJaA9DCG75SEq6GXBAlIaUUpRoFU37AWgWR0CVN6OyVv/BdX2UKGgGaAloD0MI+8kYH2aFb0CUhpRSlGgVTYQBaBZHQJU43DAJswd1fZQoaAZoCWgPQwhcWg2J+1dtQJSGlFKUaBVNUwFoFkdAlTmzo2XLNnV9lChoBmgJaA9DCDQr24f8GXFAlIaUUpRoFUv+aBZHQJU5wYEW69V1fZQoaAZoCWgPQwgjMqzijahuQJSGlFKUaBVNSwFoFkdAlTocvugHvHV9lChoBmgJaA9DCAA3ixcLmnFAlIaUUpRoFU2IAWgWR0CVOooegctHdX2UKGgGaAloD0MIMUJ4tHFCcECUhpRSlGgVTYIBaBZHQJU7cjKPn0V1fZQoaAZoCWgPQwgZrDjVGqxwQJSGlFKUaBVNqAFoFkdAlTwoGY8dP3V9lChoBmgJaA9DCGKga19AoG1AlIaUUpRoFU2hAWgWR0CVPCidJ8OTdX2UKGgGaAloD0MIn3O366XQcECUhpRSlGgVTYIBaBZHQJU/51vES/V1fZQoaAZoCWgPQwiCxHb3wPFxQJSGlFKUaBVNSQJoFkdAlUDlI3BHkXV9lChoBmgJaA9DCJDXg0lxcHJAlIaUUpRoFU0XAWgWR0CVQgkhA4XGdX2UKGgGaAloD0MIKChFK7dNcUCUhpRSlGgVTTgBaBZHQJVCL1L8Jld1fZQoaAZoCWgPQwgzaykg7VBvQJSGlFKUaBVNDAFoFkdAlUMzRYzSC3V9lChoBmgJaA9DCJrQJLGkGW1AlIaUUpRoFU2WAWgWR0CVQ5XtjTa1dX2UKGgGaAloD0MIN92yQ3wGcUCUhpRSlGgVTSMBaBZHQJVF4woLG711fZQoaAZoCWgPQwiTcvc5PudsQJSGlFKUaBVNWwFoFkdAlUh6zJIUanV9lChoBmgJaA9DCN0Gtd8awXFAlIaUUpRoFU0oAWgWR0CVSNfG+9J0dX2UKGgGaAloD0MIxQJf0e3YcECUhpRSlGgVTW0BaBZHQJVLdmBe5Wl1fZQoaAZoCWgPQwg+7IUCdthwQJSGlFKUaBVNpQFoFkdAlUuELH+6y3V9lChoBmgJaA9DCIsyG2SS82xAlIaUUpRoFU3VAmgWR0CVYM4EOiFkdX2UKGgGaAloD0MIZ195kB68bkCUhpRSlGgVTaQBaBZHQJVg3C/Glyl1fZQoaAZoCWgPQwj4a7JGvbNuQJSGlFKUaBVNegFoFkdAlWExLkCFK3V9lChoBmgJaA9DCDVfJR+7gHFAlIaUUpRoFU0XAWgWR0CVYTHT7VJ+dX2UKGgGaAloD0MIZf1mYjoPZECUhpRSlGgVTegDaBZHQJVjE0O3DvV1fZQoaAZoCWgPQwjtm/urR5FwQJSGlFKUaBVNCAFoFkdAlWO95D7ZWnV9lChoBmgJaA9DCGDI6laP4XFAlIaUUpRoFU39AWgWR0CVZIj94u9OdX2UKGgGaAloD0MIfotOltpgckCUhpRSlGgVTVcBaBZHQJVma0iQkop1fZQoaAZoCWgPQwjaVrPOuGlyQJSGlFKUaBVNhgFoFkdAlWd0MgEEDHV9lChoBmgJaA9DCKX0TC+xbnBAlIaUUpRoFU2wAWgWR0CVaSh11W8zdX2UKGgGaAloD0MIXb9gN+wocUCUhpRSlGgVTScBaBZHQJVpqtPpIMB1fZQoaAZoCWgPQwj12JYBp2FwQJSGlFKUaBVNDwFoFkdAlWq+UpuuR3V9lChoBmgJaA9DCOcXJejv3XFAlIaUUpRoFUv4aBZHQJVqyOmzjWF1fZQoaAZoCWgPQwhtqYO8XhlwQJSGlFKUaBVNIAJoFkdAlWzYEwFkhHV9lChoBmgJaA9DCBwj2SMUXnFAlIaUUpRoFU0CAWgWR0CVbcczZYgadX2UKGgGaAloD0MIvHfUmBBvcECUhpRSlGgVTc0BaBZHQJVuKHvc8DB1fZQoaAZoCWgPQwiXi/hOjGhyQJSGlFKUaBVNSAFoFkdAlW6ZOJtSAHV9lChoBmgJaA9DCNIcWfnl5HBAlIaUUpRoFU21AWgWR0CVb2DQZ4wAdX2UKGgGaAloD0MIafzCK8mqcUCUhpRSlGgVTXUBaBZHQJVwUKlYU351fZQoaAZoCWgPQwj752nAIGRsQJSGlFKUaBVNYQFoFkdAlXNEWIoE0XV9lChoBmgJaA9DCGkCRSyiF3BAlIaUUpRoFU3LAWgWR0CVc5MmF8G+dX2UKGgGaAloD0MI73GmCdtFTkCUhpRSlGgVS9poFkdAlXPYgvDgqHV9lChoBmgJaA9DCMpwPJ9BfnJAlIaUUpRoFU1PAWgWR0CVdYIhyKekdX2UKGgGaAloD0MImGvRArS3cECUhpRSlGgVTY8BaBZHQJV6ltALRa51fZQoaAZoCWgPQwiZ02UxcW9wQJSGlFKUaBVNgwFoFkdAlXqaLXL/0nV9lChoBmgJaA9DCHdM3ZUdb3JAlIaUUpRoFU0oAWgWR0CVe0W/rSmZdX2UKGgGaAloD0MIETl9PV9fcUCUhpRSlGgVTWABaBZHQJV8n1Gsmv51fZQoaAZoCWgPQwiPOGQD6Q1vQJSGlFKUaBVNDgFoFkdAlXzX/Pw/gXV9lChoBmgJaA9DCE/OUNwxEHNAlIaUUpRoFU2cAWgWR0CVfVCu2Zy/dX2UKGgGaAloD0MIP3RBfcsFbkCUhpRSlGgVTbICaBZHQJV9pAyEcsF1fZQoaAZoCWgPQwhywK4mD/JxQJSGlFKUaBVNGQJoFkdAlX5lgH/tIHV9lChoBmgJaA9DCHbgnBElvGpAlIaUUpRoFU19AmgWR0CVf8nYQJ5WdX2UKGgGaAloD0MI3XniOVtDcECUhpRSlGgVTZMBaBZHQJWA7peNT991fZQoaAZoCWgPQwhRbAVNy6FuQJSGlFKUaBVNKgFoFkdAlYH6brkbP3V9lChoBmgJaA9DCAA49uy5BW9AlIaUUpRoFU1mAWgWR0CVhDm7rcCYdX2UKGgGaAloD0MIpRDIJY5HcUCUhpRSlGgVTUYBaBZHQJWE44KhL5B1fZQoaAZoCWgPQwiLNPEOsJNyQJSGlFKUaBVNGwFoFkdAlYhduUD+znV9lChoBmgJaA9DCElpNo9DpnFAlIaUUpRoFU3XAWgWR0CViWPa+N96dX2UKGgGaAloD0MIkq0up8SRcUCUhpRSlGgVTUcBaBZHQJWKJeZ5Rj11fZQoaAZoCWgPQwh/NJwyN7xxQJSGlFKUaBVNIgFoFkdAlYp10Lc9GXV9lChoBmgJaA9DCCnOUUfH6G1AlIaUUpRoFU1oAWgWR0CVi8l9Sde6dX2UKGgGaAloD0MIdqT6zm98cECUhpRSlGgVTVABaBZHQJWMc3m3fAN1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74e05abef62ad59292cc8ea53ef5f34a7314632c2c31421ac6ebfdba1b80d17b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b7be246c6cc92ffa25e0b546557e6a6ad8942d44dba5b381c6e43962cf9990f
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.30515948334556, "std_reward": 17.40894190286168, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T10:48:08.982765"}