rahul-t-p commited on
Commit
e58cf78
·
1 Parent(s): f017241

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -94.19 +/- 45.56
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'rahul-t-p/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 269.11 +/- 22.80
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94e4cf4670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94e4cf4700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94e4cf4790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94e4cf4820>", "_build": "<function ActorCriticPolicy._build at 0x7f94e4cf48b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f94e4cf4940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94e4cf49d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94e4cf4a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f94e4cf4af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94e4cf4b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94e4cf4c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94e4cf4ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f94e4ce08a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673864434613355509, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNUi73hErs57MIQtDEFjq5ZYkU7Yrm9MwAAgD8AAIA/zQqXPXvClbpQX9u62sedte0qv7pFMv05AACAPwAAgD9m6fi8vWiYPzQBvrsu2ca+BJ86vSZQC7wAAAAAAAAAAGavCz7SFpw/XvLUPjd9zL4NVBc+sW4VPgAAAAAAAAAAM1SrPTFlFD4voIS9QLBGvj2upzz2XXY8AAAAAAAAAABND6c9ig0xPlLrYz273Jm+vLioPcxclL0AAAAAAAAAAPreAT5HCyE/vrNPPDE8nr62XYM9yoQYvQAAAAAAAAAAZvyKPOLAZD+DfC8+vtK0vv7FHT0IN5c9AAAAAAAAAAAaLtY9UoAIP9yakr13uKS+ibumu/nLhjwAAAAAAAAAAECvnj3s6cC5W+DdtLOYEa9Ao4c6eUQnNAAAgD8AAIA/ZruiPfZsMLomiao24mnMMU8mcjprncW1AACAPwAAgD+zOXO9w3k9unAJNLtbsaw5JR9OOzAboTkAAIA/AACAP1o4oD3DeQe6xqaqu/3alDhWtYi7myo0OAAAgD8AAIA/mgqiPVJxgbs2Al28EayhPEpNwjwhwIm9AACAPwAAAABTjAQ+P4V1P/LyKD39Tai+EvCmPdAGeL0AAAAAAAAAAOYxSz0puD268so8uT5FX7Q2dno6Pd9VOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI26LMBll/cECUhpRSlIwBbJRNQwGMAXSUR0CU+i7W/ag3dX2UKGgGaAloD0MIzVmfcszBcUCUhpRSlGgVTVgBaBZHQJT7ICFK02N1fZQoaAZoCWgPQwhWKxN+Kd1sQJSGlFKUaBVNJgFoFkdAlPvMD4gzQHV9lChoBmgJaA9DCEmfVtEfR3JAlIaUUpRoFU0pAWgWR0CU/ncebNKRdX2UKGgGaAloD0MITFDDt3AJcECUhpRSlGgVTRgBaBZHQJT/gfcN6Pd1fZQoaAZoCWgPQwgHeNLC5bJxQJSGlFKUaBVNSAFoFkdAlQAEu+RHPXV9lChoBmgJaA9DCL2NzY6UO3FAlIaUUpRoFU1vAWgWR0CVABBMSK3vdX2UKGgGaAloD0MIvth78cXvbUCUhpRSlGgVTUgBaBZHQJUAN4keIVN1fZQoaAZoCWgPQwiWeEDZ1LlyQJSGlFKUaBVNFwFoFkdAlQI4BNmDlHV9lChoBmgJaA9DCN4ehIB8e21AlIaUUpRoFU0cAWgWR0CVAwAaef7KdX2UKGgGaAloD0MI/wQXK2qeT0CUhpRSlGgVS81oFkdAlQMdOqNp/XV9lChoBmgJaA9DCLlSz4LQb2xAlIaUUpRoFU0tAWgWR0CVAybh3qzJdX2UKGgGaAloD0MICmr4FhYXc0CUhpRSlGgVS/toFkdAlQO1hgE2YXV9lChoBmgJaA9DCMlxp3Qw3XFAlIaUUpRoFU03AWgWR0CVBUOPNmlJdX2UKGgGaAloD0MIl445z5gicUCUhpRSlGgVTSoCaBZHQJUGTP8hs691fZQoaAZoCWgPQwgvFobI6flsQJSGlFKUaBVNSgFoFkdAlQamdEsrd3V9lChoBmgJaA9DCC18fa2LqHBAlIaUUpRoFU0hAWgWR0CVBtOVgQYldX2UKGgGaAloD0MIqKYk63CXcECUhpRSlGgVTRkBaBZHQJUJC09hZyN1fZQoaAZoCWgPQwh39SoyOgpHQJSGlFKUaBVLyGgWR0CVHtszl90BdX2UKGgGaAloD0MIY9AJoQNTcUCUhpRSlGgVTS8BaBZHQJUfyeqaPS51fZQoaAZoCWgPQwjZfFwb6gxwQJSGlFKUaBVNRwFoFkdAlSBIC+10DHV9lChoBmgJaA9DCOMXXknyO29AlIaUUpRoFU1TAWgWR0CVIYfek56udX2UKGgGaAloD0MI/wQXK2o8O0CUhpRSlGgVS81oFkdAlSGTxb0OE3V9lChoBmgJaA9DCALTad2G8nJAlIaUUpRoFU18AWgWR0CVIwVGkN4JdX2UKGgGaAloD0MITgrzHudybkCUhpRSlGgVTYoBaBZHQJUmVWmxdIJ1fZQoaAZoCWgPQwjJHTaRWa9xQJSGlFKUaBVNFAFoFkdAlSZuLrHEM3V9lChoBmgJaA9DCC+mme51unFAlIaUUpRoFU2CAWgWR0CVJ8bJwKjSdX2UKGgGaAloD0MIdcdim1S1bECUhpRSlGgVTUQBaBZHQJUoNFSbYsd1fZQoaAZoCWgPQwhZEwt8RQFxQJSGlFKUaBVNXANoFkdAlSiDfFaStHV9lChoBmgJaA9DCFw8vOeAB3FAlIaUUpRoFU2xAWgWR0CVKPvKEFnqdX2UKGgGaAloD0MIuoeE7/2IcECUhpRSlGgVTVABaBZHQJUpTMwDeTF1fZQoaAZoCWgPQwjcfvlkRSltQJSGlFKUaBVNIQFoFkdAlSn1+/gzg3V9lChoBmgJaA9DCKPLm8M1tXJAlIaUUpRoFU0XAWgWR0CVKtpRoAXEdX2UKGgGaAloD0MIY15HHLIwX0CUhpRSlGgVTegDaBZHQJUs+hSLqD91fZQoaAZoCWgPQwg0R1Z+2VlwQJSGlFKUaBVNRgFoFkdAlS31jNIK+nV9lChoBmgJaA9DCJDdBUpK53JAlIaUUpRoFU05AWgWR0CVMKjv/io9dX2UKGgGaAloD0MIG/UQje4RcUCUhpRSlGgVTaACaBZHQJUz2fI0ZWJ1fZQoaAZoCWgPQwi1M0xtabBxQJSGlFKUaBVNuQFoFkdAlTWRZZB9kXV9lChoBmgJaA9DCG75SEq6GXBAlIaUUpRoFU37AWgWR0CVN6OyVv/BdX2UKGgGaAloD0MI+8kYH2aFb0CUhpRSlGgVTYQBaBZHQJU43DAJswd1fZQoaAZoCWgPQwhcWg2J+1dtQJSGlFKUaBVNUwFoFkdAlTmzo2XLNnV9lChoBmgJaA9DCDQr24f8GXFAlIaUUpRoFUv+aBZHQJU5wYEW69V1fZQoaAZoCWgPQwgjMqzijahuQJSGlFKUaBVNSwFoFkdAlTocvugHvHV9lChoBmgJaA9DCAA3ixcLmnFAlIaUUpRoFU2IAWgWR0CVOooegctHdX2UKGgGaAloD0MIMUJ4tHFCcECUhpRSlGgVTYIBaBZHQJU7cjKPn0V1fZQoaAZoCWgPQwgZrDjVGqxwQJSGlFKUaBVNqAFoFkdAlTwoGY8dP3V9lChoBmgJaA9DCGKga19AoG1AlIaUUpRoFU2hAWgWR0CVPCidJ8OTdX2UKGgGaAloD0MIn3O366XQcECUhpRSlGgVTYIBaBZHQJU/51vES/V1fZQoaAZoCWgPQwiCxHb3wPFxQJSGlFKUaBVNSQJoFkdAlUDlI3BHkXV9lChoBmgJaA9DCJDXg0lxcHJAlIaUUpRoFU0XAWgWR0CVQgkhA4XGdX2UKGgGaAloD0MIKChFK7dNcUCUhpRSlGgVTTgBaBZHQJVCL1L8Jld1fZQoaAZoCWgPQwgzaykg7VBvQJSGlFKUaBVNDAFoFkdAlUMzRYzSC3V9lChoBmgJaA9DCJrQJLGkGW1AlIaUUpRoFU2WAWgWR0CVQ5XtjTa1dX2UKGgGaAloD0MIN92yQ3wGcUCUhpRSlGgVTSMBaBZHQJVF4woLG711fZQoaAZoCWgPQwiTcvc5PudsQJSGlFKUaBVNWwFoFkdAlUh6zJIUanV9lChoBmgJaA9DCN0Gtd8awXFAlIaUUpRoFU0oAWgWR0CVSNfG+9J0dX2UKGgGaAloD0MIxQJf0e3YcECUhpRSlGgVTW0BaBZHQJVLdmBe5Wl1fZQoaAZoCWgPQwg+7IUCdthwQJSGlFKUaBVNpQFoFkdAlUuELH+6y3V9lChoBmgJaA9DCIsyG2SS82xAlIaUUpRoFU3VAmgWR0CVYM4EOiFkdX2UKGgGaAloD0MIZ195kB68bkCUhpRSlGgVTaQBaBZHQJVg3C/Glyl1fZQoaAZoCWgPQwj4a7JGvbNuQJSGlFKUaBVNegFoFkdAlWExLkCFK3V9lChoBmgJaA9DCDVfJR+7gHFAlIaUUpRoFU0XAWgWR0CVYTHT7VJ+dX2UKGgGaAloD0MIZf1mYjoPZECUhpRSlGgVTegDaBZHQJVjE0O3DvV1fZQoaAZoCWgPQwjtm/urR5FwQJSGlFKUaBVNCAFoFkdAlWO95D7ZWnV9lChoBmgJaA9DCGDI6laP4XFAlIaUUpRoFU39AWgWR0CVZIj94u9OdX2UKGgGaAloD0MIfotOltpgckCUhpRSlGgVTVcBaBZHQJVma0iQkop1fZQoaAZoCWgPQwjaVrPOuGlyQJSGlFKUaBVNhgFoFkdAlWd0MgEEDHV9lChoBmgJaA9DCKX0TC+xbnBAlIaUUpRoFU2wAWgWR0CVaSh11W8zdX2UKGgGaAloD0MIXb9gN+wocUCUhpRSlGgVTScBaBZHQJVpqtPpIMB1fZQoaAZoCWgPQwj12JYBp2FwQJSGlFKUaBVNDwFoFkdAlWq+UpuuR3V9lChoBmgJaA9DCOcXJejv3XFAlIaUUpRoFUv4aBZHQJVqyOmzjWF1fZQoaAZoCWgPQwhtqYO8XhlwQJSGlFKUaBVNIAJoFkdAlWzYEwFkhHV9lChoBmgJaA9DCBwj2SMUXnFAlIaUUpRoFU0CAWgWR0CVbcczZYgadX2UKGgGaAloD0MIvHfUmBBvcECUhpRSlGgVTc0BaBZHQJVuKHvc8DB1fZQoaAZoCWgPQwiXi/hOjGhyQJSGlFKUaBVNSAFoFkdAlW6ZOJtSAHV9lChoBmgJaA9DCNIcWfnl5HBAlIaUUpRoFU21AWgWR0CVb2DQZ4wAdX2UKGgGaAloD0MIafzCK8mqcUCUhpRSlGgVTXUBaBZHQJVwUKlYU351fZQoaAZoCWgPQwj752nAIGRsQJSGlFKUaBVNYQFoFkdAlXNEWIoE0XV9lChoBmgJaA9DCGkCRSyiF3BAlIaUUpRoFU3LAWgWR0CVc5MmF8G+dX2UKGgGaAloD0MI73GmCdtFTkCUhpRSlGgVS9poFkdAlXPYgvDgqHV9lChoBmgJaA9DCMpwPJ9BfnJAlIaUUpRoFU1PAWgWR0CVdYIhyKekdX2UKGgGaAloD0MImGvRArS3cECUhpRSlGgVTY8BaBZHQJV6ltALRa51fZQoaAZoCWgPQwiZ02UxcW9wQJSGlFKUaBVNgwFoFkdAlXqaLXL/0nV9lChoBmgJaA9DCHdM3ZUdb3JAlIaUUpRoFU0oAWgWR0CVe0W/rSmZdX2UKGgGaAloD0MIETl9PV9fcUCUhpRSlGgVTWABaBZHQJV8n1Gsmv51fZQoaAZoCWgPQwiPOGQD6Q1vQJSGlFKUaBVNDgFoFkdAlXzX/Pw/gXV9lChoBmgJaA9DCE/OUNwxEHNAlIaUUpRoFU2cAWgWR0CVfVCu2Zy/dX2UKGgGaAloD0MIP3RBfcsFbkCUhpRSlGgVTbICaBZHQJV9pAyEcsF1fZQoaAZoCWgPQwhywK4mD/JxQJSGlFKUaBVNGQJoFkdAlX5lgH/tIHV9lChoBmgJaA9DCHbgnBElvGpAlIaUUpRoFU19AmgWR0CVf8nYQJ5WdX2UKGgGaAloD0MI3XniOVtDcECUhpRSlGgVTZMBaBZHQJWA7peNT991fZQoaAZoCWgPQwhRbAVNy6FuQJSGlFKUaBVNKgFoFkdAlYH6brkbP3V9lChoBmgJaA9DCAA49uy5BW9AlIaUUpRoFU1mAWgWR0CVhDm7rcCYdX2UKGgGaAloD0MIpRDIJY5HcUCUhpRSlGgVTUYBaBZHQJWE44KhL5B1fZQoaAZoCWgPQwiLNPEOsJNyQJSGlFKUaBVNGwFoFkdAlYhduUD+znV9lChoBmgJaA9DCElpNo9DpnFAlIaUUpRoFU3XAWgWR0CViWPa+N96dX2UKGgGaAloD0MIkq0up8SRcUCUhpRSlGgVTUcBaBZHQJWKJeZ5Rj11fZQoaAZoCWgPQwh/NJwyN7xxQJSGlFKUaBVNIgFoFkdAlYp10Lc9GXV9lChoBmgJaA9DCCnOUUfH6G1AlIaUUpRoFU1oAWgWR0CVi8l9Sde6dX2UKGgGaAloD0MIdqT6zm98cECUhpRSlGgVTVABaBZHQJWMc3m3fAN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f27b2b71d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f27b2b71dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f27b2b71e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f27b2b71ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f27b2b71f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f27b2b75040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f27b2b750d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f27b2b75160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f27b2b751f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f27b2b75280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f27b2b75310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f27b2b753a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f27b2b6bcc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676866438799418416, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANogiz32ZE26zzLBu0ZyAjeMGYQ6QJNutgAAgD8AAAAAM5MMvmyAzDzF84y8KUouvuNBj7uqmDU9AAAAAAAAAABNd7o90C4LPyJ3fTkPB8O+Sbw7vFGXjjoAAAAAAAAAAOZRo72PVgu6tR5as8C3E7FcDcm7EYivMwAAgD8AAIA/Zi0APp62Oj/3Dcu8fs+uvhm+Gz2N2xq8AAAAAAAAAAAGAhc+jduMP04IQj7GON++Q40PPsDm5DwAAAAAAAAAAE2eUL02bHc9WDE3vubRUb6vWd69kjNJvAAAAAAAAAAAZnrlvCMJOD16m6W8adYdvrUHVj11UI69AAAAAAAAAAC6T2A+MhNTP4XN6Dys7rm+KwIIPiDmgr0AAAAAAAAAADNWTT2PFjC6dvf0tqKbpjGu5C26ht0ONgAAgD8AAIA/zZ1ZPR99g7l2iGu6s8jIsc6lk7sDl6GzAACAPwAAgD+awCm9TVrGPsi+hDtKNna+sDE0PNqglzsAAAAAAAAAAHOi+T3qNcs+Gkb3vf9Hir41e7M8bg4HPAAAAAAAAAAAjdx0vj2+WD+SvLo9+TT7vtbUBb5j96M9AAAAAAAAAAAAZbe9PbplOoCZmz23vNW96RQiu02f6r4AAAAAAAAAAA3mQz4LuhA/B/GLvVSXvL6/Vhs97pe8vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAoBjz17ucUCUhpRSlIwBbJRL6YwBdJRHQJBm/oLXtjV1fZQoaAZoCWgPQwhCz2bV5/pFQJSGlFKUaBVL2mgWR0CQZx8FY+0PdX2UKGgGaAloD0MIesiUD0GdcECUhpRSlGgVS/toFkdAkGom5MDfWXV9lChoBmgJaA9DCKkyjLtB9nBAlIaUUpRoFU0dAWgWR0CQbK9aUzKtdX2UKGgGaAloD0MIQdR9AJKTckCUhpRSlGgVTQ8BaBZHQJBtBUp/gBN1fZQoaAZoCWgPQwiUh4VaU2NwQJSGlFKUaBVN/QJoFkdAkG0mS6lLvnV9lChoBmgJaA9DCLwC0ZMyc1xAlIaUUpRoFU3oA2gWR0CQbaoOhCdCdX2UKGgGaAloD0MIDhMNUnCecECUhpRSlGgVTQABaBZHQJBtz4L1EmZ1fZQoaAZoCWgPQwhNo8nF2N5yQJSGlFKUaBVNNgFoFkdAkG4WvGIbfnV9lChoBmgJaA9DCEyJJHoZS21AlIaUUpRoFU0JAWgWR0CQbkIZIg/1dX2UKGgGaAloD0MI1QeSd06ScUCUhpRSlGgVTSYBaBZHQJBuSHxjJ+51fZQoaAZoCWgPQwgHJ6Jf28JwQJSGlFKUaBVNUAFoFkdAkG6Mfms/6nV9lChoBmgJaA9DCJV9VwT/dXBAlIaUUpRoFU2wAWgWR0CQbtq3mV7hdX2UKGgGaAloD0MI/P1itqTzcECUhpRSlGgVTQ0BaBZHQJBwfBHkLhJ1fZQoaAZoCWgPQwiO6nQgKyJxQJSGlFKUaBVNSAFoFkdAkHEMtK7I1nV9lChoBmgJaA9DCDUk7rE013JAlIaUUpRoFU0rAWgWR0CQcXAo5PuYdX2UKGgGaAloD0MIMEymCsZ7bECUhpRSlGgVTRcBaBZHQJBzQ+s5n151fZQoaAZoCWgPQwjnjv6Xa3dyQJSGlFKUaBVL2mgWR0CQc61v2oNvdX2UKGgGaAloD0MILZPheL6tb0CUhpRSlGgVTQ4BaBZHQJB2IRChN/R1fZQoaAZoCWgPQwj/6nHfqihwQJSGlFKUaBVNEwFoFkdAkHYqWX1J2HV9lChoBmgJaA9DCD9XW7E/G3FAlIaUUpRoFU0mAWgWR0CQdklsguAadX2UKGgGaAloD0MIhVypZ4GJckCUhpRSlGgVTQYBaBZHQJB2Wj+Jgst1fZQoaAZoCWgPQwiR0QFJGEZwQJSGlFKUaBVNMwFoFkdAkHZ3WSU1RHV9lChoBmgJaA9DCH0E/vDzHXJAlIaUUpRoFU0FAWgWR0CQdqOGCZnddX2UKGgGaAloD0MIumkzToMocUCUhpRSlGgVS/9oFkdAkHbEbgjyF3V9lChoBmgJaA9DCBgIAmTof3FAlIaUUpRoFU0aAWgWR0CQdvIcinpCdX2UKGgGaAloD0MI66pALYZacECUhpRSlGgVS/FoFkdAkHgAPZqVQnV9lChoBmgJaA9DCBK/Yg0XkXJAlIaUUpRoFU1VAWgWR0CQeFvCdjG2dX2UKGgGaAloD0MIHQBxVy+Hc0CUhpRSlGgVTRcBaBZHQJB587ZFoct1fZQoaAZoCWgPQwieDI6SF9twQJSGlFKUaBVNPwFoFkdAkHq8Nc4YJnV9lChoBmgJaA9DCFuxv+weQWVAlIaUUpRoFU3oA2gWR0CQe4fOlfqpdX2UKGgGaAloD0MIEvjDz797cUCUhpRSlGgVTRMBaBZHQJB8HWvr4WV1fZQoaAZoCWgPQwjajT7mg09xQJSGlFKUaBVL5GgWR0CQfPGs3hn8dX2UKGgGaAloD0MIePLpsW3icECUhpRSlGgVTRMBaBZHQJB+aB19v0h1fZQoaAZoCWgPQwivzjEgOxpwQJSGlFKUaBVNCwFoFkdAkH5y3w1BMXV9lChoBmgJaA9DCNmVlpF6nW9AlIaUUpRoFU0TAWgWR0CQfnFdLQHBdX2UKGgGaAloD0MIAKjixi2ecECUhpRSlGgVS/5oFkdAkH6X5eqrBHV9lChoBmgJaA9DCDl/EwoRRHBAlIaUUpRoFU0LAWgWR0CQfsZw4sErdX2UKGgGaAloD0MIg6eQK7VkckCUhpRSlGgVS+BoFkdAkH9I7aIvanV9lChoBmgJaA9DCHSZmgTvvmNAlIaUUpRoFU3oA2gWR0CQf3n9ehPCdX2UKGgGaAloD0MIcD/ggUGJcECUhpRSlGgVTTIBaBZHQJB/xnmJWNp1fZQoaAZoCWgPQwgq/1peOS9xQJSGlFKUaBVNPAFoFkdAkH/LOeJ53XV9lChoBmgJaA9DCEWduYeE8XBAlIaUUpRoFU0xAWgWR0CQgPC0ngHedX2UKGgGaAloD0MIRWRYxZsTbkCUhpRSlGgVTQwBaBZHQJCDAvUSZjR1fZQoaAZoCWgPQwgSg8DK4ftwQJSGlFKUaBVNBwFoFkdAkIPf0ulGgHV9lChoBmgJaA9DCOTaUDFOF3JAlIaUUpRoFU0MAWgWR0CQhOG96C17dX2UKGgGaAloD0MIrOY5It8SbUCUhpRSlGgVS+hoFkdAkIZoGyHEdnV9lChoBmgJaA9DCLxXrUz4cHBAlIaUUpRoFUvyaBZHQJCd1otcv/R1fZQoaAZoCWgPQwgRqWkXUxNxQJSGlFKUaBVL/mgWR0CQnkD6nBLxdX2UKGgGaAloD0MICr/Uz5sdckCUhpRSlGgVTTABaBZHQJCecETxoZh1fZQoaAZoCWgPQwjutDUiGFRwQJSGlFKUaBVL92gWR0CQnt+AmReUdX2UKGgGaAloD0MIzT6PUR6abECUhpRSlGgVS/1oFkdAkJ+dpmEoOXV9lChoBmgJaA9DCCeiX1t/V3BAlIaUUpRoFU04AWgWR0CQoEQYUFjedX2UKGgGaAloD0MI16axvZYfcUCUhpRSlGgVTRwBaBZHQJCgUDTz/ZN1fZQoaAZoCWgPQwjqr1dYMGZxQJSGlFKUaBVNGAFoFkdAkKCN7ngYQHV9lChoBmgJaA9DCLlTOli/03FAlIaUUpRoFU0PAWgWR0CQobmz0HyFdX2UKGgGaAloD0MIjXxe8VQjbkCUhpRSlGgVTQkBaBZHQJCja3z+WGB1fZQoaAZoCWgPQwhU/yCSYW1yQJSGlFKUaBVNBQFoFkdAkKPp/9YOlXV9lChoBmgJaA9DCMxDpnwIx3BAlIaUUpRoFU0gAWgWR0CQpYZKWcBmdX2UKGgGaAloD0MIObNdoQ+Vb0CUhpRSlGgVTQ0BaBZHQJCmAOskpqh1fZQoaAZoCWgPQwjTakjcIwdwQJSGlFKUaBVL52gWR0CQpjBVdX1bdX2UKGgGaAloD0MI963WiQvccUCUhpRSlGgVTQsBaBZHQJCm4srd30R1fZQoaAZoCWgPQwh6i4f3HFVyQJSGlFKUaBVNLwFoFkdAkKfi/O+qR3V9lChoBmgJaA9DCJ0PzxIksXJAlIaUUpRoFU0DAWgWR0CQqIfxMFlkdX2UKGgGaAloD0MIL8IU5dJuckCUhpRSlGgVTRkBaBZHQJCopXlr/Kh1fZQoaAZoCWgPQwiR0mweR+BxQJSGlFKUaBVNBQFoFkdAkKjgG4ZuRHV9lChoBmgJaA9DCJ3ZrtCHgW9AlIaUUpRoFU0VAWgWR0CQqRvPkaMrdX2UKGgGaAloD0MIGArYDsb7cUCUhpRSlGgVS+doFkdAkKklX3g1nHV9lChoBmgJaA9DCL4xBADHK3JAlIaUUpRoFU1+AWgWR0CQqeI0IkZ8dX2UKGgGaAloD0MIWp2coTjZYkCUhpRSlGgVTegDaBZHQJCqZALRa5h1fZQoaAZoCWgPQwi21hcJbQ1QQJSGlFKUaBVL2GgWR0CQqqQo1DSgdX2UKGgGaAloD0MIfLYODrb3cECUhpRSlGgVTTwBaBZHQJCtApMHryF1fZQoaAZoCWgPQwgXD+85MFByQJSGlFKUaBVNDwFoFkdAkK2r6pHZsnV9lChoBmgJaA9DCBssnKT5rm5AlIaUUpRoFU0gAWgWR0CQrrBgNPP+dX2UKGgGaAloD0MIsHYU56jIbkCUhpRSlGgVTSwBaBZHQJCwFAs052h1fZQoaAZoCWgPQwga/P1i9qtxQJSGlFKUaBVNGwFoFkdAkLCWp6yB1HV9lChoBmgJaA9DCGFu93IfbXJAlIaUUpRoFU0FAWgWR0CQsJagVXV9dX2UKGgGaAloD0MIlX8tr9xoc0CUhpRSlGgVTQgBaBZHQJCwk3Ov+wV1fZQoaAZoCWgPQwhM++b+6nRxQJSGlFKUaBVL+2gWR0CQsMdxhlUZdX2UKGgGaAloD0MI3sZmRyrUYECUhpRSlGgVTegDaBZHQJCxPGyX2M91fZQoaAZoCWgPQwg1XU90nftxQJSGlFKUaBVNbAFoFkdAkLF8+eOGTXV9lChoBmgJaA9DCCfAsPz5F3JAlIaUUpRoFU0cAWgWR0CQsYbF0gbIdX2UKGgGaAloD0MItf6WADyjcECUhpRSlGgVTRUBaBZHQJCxmHi3ocJ1fZQoaAZoCWgPQwjA6zNnfQxuQJSGlFKUaBVNCAFoFkdAkLHrIHTqjnV9lChoBmgJaA9DCFNYqaCiHXBAlIaUUpRoFU0cAWgWR0CQstSApazNdX2UKGgGaAloD0MIVoDvNu8Qc0CUhpRSlGgVS/FoFkdAkLRAz544ZXV9lChoBmgJaA9DCAzlRLtKy3FAlIaUUpRoFUvxaBZHQJC01HAh0Qt1fZQoaAZoCWgPQwgKaCJs+F5gQJSGlFKUaBVN6ANoFkdAkLUoJzDGcXV9lChoBmgJaA9DCPROBdzzq3BAlIaUUpRoFUvxaBZHQJC2xxVAAyV1fZQoaAZoCWgPQwh7hnDMsn5xQJSGlFKUaBVL72gWR0CQtxwHJLdvdX2UKGgGaAloD0MIm+JxUS34bkCUhpRSlGgVS/VoFkdAkLd+7+T/yXV9lChoBmgJaA9DCIxLVdpi3W9AlIaUUpRoFUv8aBZHQJC3iEi+tbN1fZQoaAZoCWgPQwhfQ3BcBlZxQJSGlFKUaBVNAgFoFkdAkLiXkcS5AnV9lChoBmgJaA9DCPyrx33rGHJAlIaUUpRoFU0RAWgWR0CQuPwxFiKBdX2UKGgGaAloD0MIw2UVNgNWbkCUhpRSlGgVTQkBaBZHQJC5Rv3rUsp1fZQoaAZoCWgPQwgzUu+p3NByQJSGlFKUaBVNRAFoFkdAkLmYs/Y8MnV9lChoBmgJaA9DCOUOm8jM13FAlIaUUpRoFU0qAWgWR0CQucjAi3XqdX2UKGgGaAloD0MIQfD49q4IcECUhpRSlGgVS/toFkdAkLnyIDYAbXV9lChoBmgJaA9DCPda0Huj53JAlIaUUpRoFU1CAWgWR0CQuhOvMbFTdX2UKGgGaAloD0MIW80647tQckCUhpRSlGgVTaoBaBZHQJC6xum78Nx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:af64c0cd1c866114d1b980ec5f809dc5946e1da3e99308c20f2798c05d2c474b
3
- size 147416
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ed66a892193c2f7d191892627ccbc608962c38b1208ee6beaefa159171dd473
3
+ size 147392
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94e4cf4670>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94e4cf4700>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94e4cf4790>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94e4cf4820>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f94e4cf48b0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f94e4cf4940>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94e4cf49d0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94e4cf4a60>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f94e4cf4af0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94e4cf4b80>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94e4cf4c10>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94e4cf4ca0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f94e4ce08a0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -48,7 +48,7 @@
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1673864434613355509,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNUi73hErs57MIQtDEFjq5ZYkU7Yrm9MwAAgD8AAIA/zQqXPXvClbpQX9u62sedte0qv7pFMv05AACAPwAAgD9m6fi8vWiYPzQBvrsu2ca+BJ86vSZQC7wAAAAAAAAAAGavCz7SFpw/XvLUPjd9zL4NVBc+sW4VPgAAAAAAAAAAM1SrPTFlFD4voIS9QLBGvj2upzz2XXY8AAAAAAAAAABND6c9ig0xPlLrYz273Jm+vLioPcxclL0AAAAAAAAAAPreAT5HCyE/vrNPPDE8nr62XYM9yoQYvQAAAAAAAAAAZvyKPOLAZD+DfC8+vtK0vv7FHT0IN5c9AAAAAAAAAAAaLtY9UoAIP9yakr13uKS+ibumu/nLhjwAAAAAAAAAAECvnj3s6cC5W+DdtLOYEa9Ao4c6eUQnNAAAgD8AAIA/ZruiPfZsMLomiao24mnMMU8mcjprncW1AACAPwAAgD+zOXO9w3k9unAJNLtbsaw5JR9OOzAboTkAAIA/AACAP1o4oD3DeQe6xqaqu/3alDhWtYi7myo0OAAAgD8AAIA/mgqiPVJxgbs2Al28EayhPEpNwjwhwIm9AACAPwAAAABTjAQ+P4V1P/LyKD39Tai+EvCmPdAGeL0AAAAAAAAAAOYxSz0puD268so8uT5FX7Q2dno6Pd9VOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -70,7 +70,7 @@
70
  "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI26LMBll/cECUhpRSlIwBbJRNQwGMAXSUR0CU+i7W/ag3dX2UKGgGaAloD0MIzVmfcszBcUCUhpRSlGgVTVgBaBZHQJT7ICFK02N1fZQoaAZoCWgPQwhWKxN+Kd1sQJSGlFKUaBVNJgFoFkdAlPvMD4gzQHV9lChoBmgJaA9DCEmfVtEfR3JAlIaUUpRoFU0pAWgWR0CU/ncebNKRdX2UKGgGaAloD0MITFDDt3AJcECUhpRSlGgVTRgBaBZHQJT/gfcN6Pd1fZQoaAZoCWgPQwgHeNLC5bJxQJSGlFKUaBVNSAFoFkdAlQAEu+RHPXV9lChoBmgJaA9DCL2NzY6UO3FAlIaUUpRoFU1vAWgWR0CVABBMSK3vdX2UKGgGaAloD0MIvth78cXvbUCUhpRSlGgVTUgBaBZHQJUAN4keIVN1fZQoaAZoCWgPQwiWeEDZ1LlyQJSGlFKUaBVNFwFoFkdAlQI4BNmDlHV9lChoBmgJaA9DCN4ehIB8e21AlIaUUpRoFU0cAWgWR0CVAwAaef7KdX2UKGgGaAloD0MI/wQXK2qeT0CUhpRSlGgVS81oFkdAlQMdOqNp/XV9lChoBmgJaA9DCLlSz4LQb2xAlIaUUpRoFU0tAWgWR0CVAybh3qzJdX2UKGgGaAloD0MICmr4FhYXc0CUhpRSlGgVS/toFkdAlQO1hgE2YXV9lChoBmgJaA9DCMlxp3Qw3XFAlIaUUpRoFU03AWgWR0CVBUOPNmlJdX2UKGgGaAloD0MIl445z5gicUCUhpRSlGgVTSoCaBZHQJUGTP8hs691fZQoaAZoCWgPQwgvFobI6flsQJSGlFKUaBVNSgFoFkdAlQamdEsrd3V9lChoBmgJaA9DCC18fa2LqHBAlIaUUpRoFU0hAWgWR0CVBtOVgQYldX2UKGgGaAloD0MIqKYk63CXcECUhpRSlGgVTRkBaBZHQJUJC09hZyN1fZQoaAZoCWgPQwh39SoyOgpHQJSGlFKUaBVLyGgWR0CVHtszl90BdX2UKGgGaAloD0MIY9AJoQNTcUCUhpRSlGgVTS8BaBZHQJUfyeqaPS51fZQoaAZoCWgPQwjZfFwb6gxwQJSGlFKUaBVNRwFoFkdAlSBIC+10DHV9lChoBmgJaA9DCOMXXknyO29AlIaUUpRoFU1TAWgWR0CVIYfek56udX2UKGgGaAloD0MI/wQXK2o8O0CUhpRSlGgVS81oFkdAlSGTxb0OE3V9lChoBmgJaA9DCALTad2G8nJAlIaUUpRoFU18AWgWR0CVIwVGkN4JdX2UKGgGaAloD0MITgrzHudybkCUhpRSlGgVTYoBaBZHQJUmVWmxdIJ1fZQoaAZoCWgPQwjJHTaRWa9xQJSGlFKUaBVNFAFoFkdAlSZuLrHEM3V9lChoBmgJaA9DCC+mme51unFAlIaUUpRoFU2CAWgWR0CVJ8bJwKjSdX2UKGgGaAloD0MIdcdim1S1bECUhpRSlGgVTUQBaBZHQJUoNFSbYsd1fZQoaAZoCWgPQwhZEwt8RQFxQJSGlFKUaBVNXANoFkdAlSiDfFaStHV9lChoBmgJaA9DCFw8vOeAB3FAlIaUUpRoFU2xAWgWR0CVKPvKEFnqdX2UKGgGaAloD0MIuoeE7/2IcECUhpRSlGgVTVABaBZHQJUpTMwDeTF1fZQoaAZoCWgPQwjcfvlkRSltQJSGlFKUaBVNIQFoFkdAlSn1+/gzg3V9lChoBmgJaA9DCKPLm8M1tXJAlIaUUpRoFU0XAWgWR0CVKtpRoAXEdX2UKGgGaAloD0MIY15HHLIwX0CUhpRSlGgVTegDaBZHQJUs+hSLqD91fZQoaAZoCWgPQwg0R1Z+2VlwQJSGlFKUaBVNRgFoFkdAlS31jNIK+nV9lChoBmgJaA9DCJDdBUpK53JAlIaUUpRoFU05AWgWR0CVMKjv/io9dX2UKGgGaAloD0MIG/UQje4RcUCUhpRSlGgVTaACaBZHQJUz2fI0ZWJ1fZQoaAZoCWgPQwi1M0xtabBxQJSGlFKUaBVNuQFoFkdAlTWRZZB9kXV9lChoBmgJaA9DCG75SEq6GXBAlIaUUpRoFU37AWgWR0CVN6OyVv/BdX2UKGgGaAloD0MI+8kYH2aFb0CUhpRSlGgVTYQBaBZHQJU43DAJswd1fZQoaAZoCWgPQwhcWg2J+1dtQJSGlFKUaBVNUwFoFkdAlTmzo2XLNnV9lChoBmgJaA9DCDQr24f8GXFAlIaUUpRoFUv+aBZHQJU5wYEW69V1fZQoaAZoCWgPQwgjMqzijahuQJSGlFKUaBVNSwFoFkdAlTocvugHvHV9lChoBmgJaA9DCAA3ixcLmnFAlIaUUpRoFU2IAWgWR0CVOooegctHdX2UKGgGaAloD0MIMUJ4tHFCcECUhpRSlGgVTYIBaBZHQJU7cjKPn0V1fZQoaAZoCWgPQwgZrDjVGqxwQJSGlFKUaBVNqAFoFkdAlTwoGY8dP3V9lChoBmgJaA9DCGKga19AoG1AlIaUUpRoFU2hAWgWR0CVPCidJ8OTdX2UKGgGaAloD0MIn3O366XQcECUhpRSlGgVTYIBaBZHQJU/51vES/V1fZQoaAZoCWgPQwiCxHb3wPFxQJSGlFKUaBVNSQJoFkdAlUDlI3BHkXV9lChoBmgJaA9DCJDXg0lxcHJAlIaUUpRoFU0XAWgWR0CVQgkhA4XGdX2UKGgGaAloD0MIKChFK7dNcUCUhpRSlGgVTTgBaBZHQJVCL1L8Jld1fZQoaAZoCWgPQwgzaykg7VBvQJSGlFKUaBVNDAFoFkdAlUMzRYzSC3V9lChoBmgJaA9DCJrQJLGkGW1AlIaUUpRoFU2WAWgWR0CVQ5XtjTa1dX2UKGgGaAloD0MIN92yQ3wGcUCUhpRSlGgVTSMBaBZHQJVF4woLG711fZQoaAZoCWgPQwiTcvc5PudsQJSGlFKUaBVNWwFoFkdAlUh6zJIUanV9lChoBmgJaA9DCN0Gtd8awXFAlIaUUpRoFU0oAWgWR0CVSNfG+9J0dX2UKGgGaAloD0MIxQJf0e3YcECUhpRSlGgVTW0BaBZHQJVLdmBe5Wl1fZQoaAZoCWgPQwg+7IUCdthwQJSGlFKUaBVNpQFoFkdAlUuELH+6y3V9lChoBmgJaA9DCIsyG2SS82xAlIaUUpRoFU3VAmgWR0CVYM4EOiFkdX2UKGgGaAloD0MIZ195kB68bkCUhpRSlGgVTaQBaBZHQJVg3C/Glyl1fZQoaAZoCWgPQwj4a7JGvbNuQJSGlFKUaBVNegFoFkdAlWExLkCFK3V9lChoBmgJaA9DCDVfJR+7gHFAlIaUUpRoFU0XAWgWR0CVYTHT7VJ+dX2UKGgGaAloD0MIZf1mYjoPZECUhpRSlGgVTegDaBZHQJVjE0O3DvV1fZQoaAZoCWgPQwjtm/urR5FwQJSGlFKUaBVNCAFoFkdAlWO95D7ZWnV9lChoBmgJaA9DCGDI6laP4XFAlIaUUpRoFU39AWgWR0CVZIj94u9OdX2UKGgGaAloD0MIfotOltpgckCUhpRSlGgVTVcBaBZHQJVma0iQkop1fZQoaAZoCWgPQwjaVrPOuGlyQJSGlFKUaBVNhgFoFkdAlWd0MgEEDHV9lChoBmgJaA9DCKX0TC+xbnBAlIaUUpRoFU2wAWgWR0CVaSh11W8zdX2UKGgGaAloD0MIXb9gN+wocUCUhpRSlGgVTScBaBZHQJVpqtPpIMB1fZQoaAZoCWgPQwj12JYBp2FwQJSGlFKUaBVNDwFoFkdAlWq+UpuuR3V9lChoBmgJaA9DCOcXJejv3XFAlIaUUpRoFUv4aBZHQJVqyOmzjWF1fZQoaAZoCWgPQwhtqYO8XhlwQJSGlFKUaBVNIAJoFkdAlWzYEwFkhHV9lChoBmgJaA9DCBwj2SMUXnFAlIaUUpRoFU0CAWgWR0CVbcczZYgadX2UKGgGaAloD0MIvHfUmBBvcECUhpRSlGgVTc0BaBZHQJVuKHvc8DB1fZQoaAZoCWgPQwiXi/hOjGhyQJSGlFKUaBVNSAFoFkdAlW6ZOJtSAHV9lChoBmgJaA9DCNIcWfnl5HBAlIaUUpRoFU21AWgWR0CVb2DQZ4wAdX2UKGgGaAloD0MIafzCK8mqcUCUhpRSlGgVTXUBaBZHQJVwUKlYU351fZQoaAZoCWgPQwj752nAIGRsQJSGlFKUaBVNYQFoFkdAlXNEWIoE0XV9lChoBmgJaA9DCGkCRSyiF3BAlIaUUpRoFU3LAWgWR0CVc5MmF8G+dX2UKGgGaAloD0MI73GmCdtFTkCUhpRSlGgVS9poFkdAlXPYgvDgqHV9lChoBmgJaA9DCMpwPJ9BfnJAlIaUUpRoFU1PAWgWR0CVdYIhyKekdX2UKGgGaAloD0MImGvRArS3cECUhpRSlGgVTY8BaBZHQJV6ltALRa51fZQoaAZoCWgPQwiZ02UxcW9wQJSGlFKUaBVNgwFoFkdAlXqaLXL/0nV9lChoBmgJaA9DCHdM3ZUdb3JAlIaUUpRoFU0oAWgWR0CVe0W/rSmZdX2UKGgGaAloD0MIETl9PV9fcUCUhpRSlGgVTWABaBZHQJV8n1Gsmv51fZQoaAZoCWgPQwiPOGQD6Q1vQJSGlFKUaBVNDgFoFkdAlXzX/Pw/gXV9lChoBmgJaA9DCE/OUNwxEHNAlIaUUpRoFU2cAWgWR0CVfVCu2Zy/dX2UKGgGaAloD0MIP3RBfcsFbkCUhpRSlGgVTbICaBZHQJV9pAyEcsF1fZQoaAZoCWgPQwhywK4mD/JxQJSGlFKUaBVNGQJoFkdAlX5lgH/tIHV9lChoBmgJaA9DCHbgnBElvGpAlIaUUpRoFU19AmgWR0CVf8nYQJ5WdX2UKGgGaAloD0MI3XniOVtDcECUhpRSlGgVTZMBaBZHQJWA7peNT991fZQoaAZoCWgPQwhRbAVNy6FuQJSGlFKUaBVNKgFoFkdAlYH6brkbP3V9lChoBmgJaA9DCAA49uy5BW9AlIaUUpRoFU1mAWgWR0CVhDm7rcCYdX2UKGgGaAloD0MIpRDIJY5HcUCUhpRSlGgVTUYBaBZHQJWE44KhL5B1fZQoaAZoCWgPQwiLNPEOsJNyQJSGlFKUaBVNGwFoFkdAlYhduUD+znV9lChoBmgJaA9DCElpNo9DpnFAlIaUUpRoFU3XAWgWR0CViWPa+N96dX2UKGgGaAloD0MIkq0up8SRcUCUhpRSlGgVTUcBaBZHQJWKJeZ5Rj11fZQoaAZoCWgPQwh/NJwyN7xxQJSGlFKUaBVNIgFoFkdAlYp10Lc9GXV9lChoBmgJaA9DCCnOUUfH6G1AlIaUUpRoFU1oAWgWR0CVi8l9Sde6dX2UKGgGaAloD0MIdqT6zm98cECUhpRSlGgVTVABaBZHQJWMc3m3fAN1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f27b2b71d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f27b2b71dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f27b2b71e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f27b2b71ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f27b2b71f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f27b2b75040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f27b2b750d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f27b2b75160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f27b2b751f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f27b2b75280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f27b2b75310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f27b2b753a0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f27b2b6bcc0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1676866438799418416,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANogiz32ZE26zzLBu0ZyAjeMGYQ6QJNutgAAgD8AAAAAM5MMvmyAzDzF84y8KUouvuNBj7uqmDU9AAAAAAAAAABNd7o90C4LPyJ3fTkPB8O+Sbw7vFGXjjoAAAAAAAAAAOZRo72PVgu6tR5as8C3E7FcDcm7EYivMwAAgD8AAIA/Zi0APp62Oj/3Dcu8fs+uvhm+Gz2N2xq8AAAAAAAAAAAGAhc+jduMP04IQj7GON++Q40PPsDm5DwAAAAAAAAAAE2eUL02bHc9WDE3vubRUb6vWd69kjNJvAAAAAAAAAAAZnrlvCMJOD16m6W8adYdvrUHVj11UI69AAAAAAAAAAC6T2A+MhNTP4XN6Dys7rm+KwIIPiDmgr0AAAAAAAAAADNWTT2PFjC6dvf0tqKbpjGu5C26ht0ONgAAgD8AAIA/zZ1ZPR99g7l2iGu6s8jIsc6lk7sDl6GzAACAPwAAgD+awCm9TVrGPsi+hDtKNna+sDE0PNqglzsAAAAAAAAAAHOi+T3qNcs+Gkb3vf9Hir41e7M8bg4HPAAAAAAAAAAAjdx0vj2+WD+SvLo9+TT7vtbUBb5j96M9AAAAAAAAAAAAZbe9PbplOoCZmz23vNW96RQiu02f6r4AAAAAAAAAAA3mQz4LuhA/B/GLvVSXvL6/Vhs97pe8vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAoBjz17ucUCUhpRSlIwBbJRL6YwBdJRHQJBm/oLXtjV1fZQoaAZoCWgPQwhCz2bV5/pFQJSGlFKUaBVL2mgWR0CQZx8FY+0PdX2UKGgGaAloD0MIesiUD0GdcECUhpRSlGgVS/toFkdAkGom5MDfWXV9lChoBmgJaA9DCKkyjLtB9nBAlIaUUpRoFU0dAWgWR0CQbK9aUzKtdX2UKGgGaAloD0MIQdR9AJKTckCUhpRSlGgVTQ8BaBZHQJBtBUp/gBN1fZQoaAZoCWgPQwiUh4VaU2NwQJSGlFKUaBVN/QJoFkdAkG0mS6lLvnV9lChoBmgJaA9DCLwC0ZMyc1xAlIaUUpRoFU3oA2gWR0CQbaoOhCdCdX2UKGgGaAloD0MIDhMNUnCecECUhpRSlGgVTQABaBZHQJBtz4L1EmZ1fZQoaAZoCWgPQwhNo8nF2N5yQJSGlFKUaBVNNgFoFkdAkG4WvGIbfnV9lChoBmgJaA9DCEyJJHoZS21AlIaUUpRoFU0JAWgWR0CQbkIZIg/1dX2UKGgGaAloD0MI1QeSd06ScUCUhpRSlGgVTSYBaBZHQJBuSHxjJ+51fZQoaAZoCWgPQwgHJ6Jf28JwQJSGlFKUaBVNUAFoFkdAkG6Mfms/6nV9lChoBmgJaA9DCJV9VwT/dXBAlIaUUpRoFU2wAWgWR0CQbtq3mV7hdX2UKGgGaAloD0MI/P1itqTzcECUhpRSlGgVTQ0BaBZHQJBwfBHkLhJ1fZQoaAZoCWgPQwiO6nQgKyJxQJSGlFKUaBVNSAFoFkdAkHEMtK7I1nV9lChoBmgJaA9DCDUk7rE013JAlIaUUpRoFU0rAWgWR0CQcXAo5PuYdX2UKGgGaAloD0MIMEymCsZ7bECUhpRSlGgVTRcBaBZHQJBzQ+s5n151fZQoaAZoCWgPQwjnjv6Xa3dyQJSGlFKUaBVL2mgWR0CQc61v2oNvdX2UKGgGaAloD0MILZPheL6tb0CUhpRSlGgVTQ4BaBZHQJB2IRChN/R1fZQoaAZoCWgPQwj/6nHfqihwQJSGlFKUaBVNEwFoFkdAkHYqWX1J2HV9lChoBmgJaA9DCD9XW7E/G3FAlIaUUpRoFU0mAWgWR0CQdklsguAadX2UKGgGaAloD0MIhVypZ4GJckCUhpRSlGgVTQYBaBZHQJB2Wj+Jgst1fZQoaAZoCWgPQwiR0QFJGEZwQJSGlFKUaBVNMwFoFkdAkHZ3WSU1RHV9lChoBmgJaA9DCH0E/vDzHXJAlIaUUpRoFU0FAWgWR0CQdqOGCZnddX2UKGgGaAloD0MIumkzToMocUCUhpRSlGgVS/9oFkdAkHbEbgjyF3V9lChoBmgJaA9DCBgIAmTof3FAlIaUUpRoFU0aAWgWR0CQdvIcinpCdX2UKGgGaAloD0MI66pALYZacECUhpRSlGgVS/FoFkdAkHgAPZqVQnV9lChoBmgJaA9DCBK/Yg0XkXJAlIaUUpRoFU1VAWgWR0CQeFvCdjG2dX2UKGgGaAloD0MIHQBxVy+Hc0CUhpRSlGgVTRcBaBZHQJB587ZFoct1fZQoaAZoCWgPQwieDI6SF9twQJSGlFKUaBVNPwFoFkdAkHq8Nc4YJnV9lChoBmgJaA9DCFuxv+weQWVAlIaUUpRoFU3oA2gWR0CQe4fOlfqpdX2UKGgGaAloD0MIEvjDz797cUCUhpRSlGgVTRMBaBZHQJB8HWvr4WV1fZQoaAZoCWgPQwjajT7mg09xQJSGlFKUaBVL5GgWR0CQfPGs3hn8dX2UKGgGaAloD0MIePLpsW3icECUhpRSlGgVTRMBaBZHQJB+aB19v0h1fZQoaAZoCWgPQwivzjEgOxpwQJSGlFKUaBVNCwFoFkdAkH5y3w1BMXV9lChoBmgJaA9DCNmVlpF6nW9AlIaUUpRoFU0TAWgWR0CQfnFdLQHBdX2UKGgGaAloD0MIAKjixi2ecECUhpRSlGgVS/5oFkdAkH6X5eqrBHV9lChoBmgJaA9DCDl/EwoRRHBAlIaUUpRoFU0LAWgWR0CQfsZw4sErdX2UKGgGaAloD0MIg6eQK7VkckCUhpRSlGgVS+BoFkdAkH9I7aIvanV9lChoBmgJaA9DCHSZmgTvvmNAlIaUUpRoFU3oA2gWR0CQf3n9ehPCdX2UKGgGaAloD0MIcD/ggUGJcECUhpRSlGgVTTIBaBZHQJB/xnmJWNp1fZQoaAZoCWgPQwgq/1peOS9xQJSGlFKUaBVNPAFoFkdAkH/LOeJ53XV9lChoBmgJaA9DCEWduYeE8XBAlIaUUpRoFU0xAWgWR0CQgPC0ngHedX2UKGgGaAloD0MIRWRYxZsTbkCUhpRSlGgVTQwBaBZHQJCDAvUSZjR1fZQoaAZoCWgPQwgSg8DK4ftwQJSGlFKUaBVNBwFoFkdAkIPf0ulGgHV9lChoBmgJaA9DCOTaUDFOF3JAlIaUUpRoFU0MAWgWR0CQhOG96C17dX2UKGgGaAloD0MIrOY5It8SbUCUhpRSlGgVS+hoFkdAkIZoGyHEdnV9lChoBmgJaA9DCLxXrUz4cHBAlIaUUpRoFUvyaBZHQJCd1otcv/R1fZQoaAZoCWgPQwgRqWkXUxNxQJSGlFKUaBVL/mgWR0CQnkD6nBLxdX2UKGgGaAloD0MICr/Uz5sdckCUhpRSlGgVTTABaBZHQJCecETxoZh1fZQoaAZoCWgPQwjutDUiGFRwQJSGlFKUaBVL92gWR0CQnt+AmReUdX2UKGgGaAloD0MIzT6PUR6abECUhpRSlGgVS/1oFkdAkJ+dpmEoOXV9lChoBmgJaA9DCCeiX1t/V3BAlIaUUpRoFU04AWgWR0CQoEQYUFjedX2UKGgGaAloD0MI16axvZYfcUCUhpRSlGgVTRwBaBZHQJCgUDTz/ZN1fZQoaAZoCWgPQwjqr1dYMGZxQJSGlFKUaBVNGAFoFkdAkKCN7ngYQHV9lChoBmgJaA9DCLlTOli/03FAlIaUUpRoFU0PAWgWR0CQobmz0HyFdX2UKGgGaAloD0MIjXxe8VQjbkCUhpRSlGgVTQkBaBZHQJCja3z+WGB1fZQoaAZoCWgPQwhU/yCSYW1yQJSGlFKUaBVNBQFoFkdAkKPp/9YOlXV9lChoBmgJaA9DCMxDpnwIx3BAlIaUUpRoFU0gAWgWR0CQpYZKWcBmdX2UKGgGaAloD0MIObNdoQ+Vb0CUhpRSlGgVTQ0BaBZHQJCmAOskpqh1fZQoaAZoCWgPQwjTakjcIwdwQJSGlFKUaBVL52gWR0CQpjBVdX1bdX2UKGgGaAloD0MI963WiQvccUCUhpRSlGgVTQsBaBZHQJCm4srd30R1fZQoaAZoCWgPQwh6i4f3HFVyQJSGlFKUaBVNLwFoFkdAkKfi/O+qR3V9lChoBmgJaA9DCJ0PzxIksXJAlIaUUpRoFU0DAWgWR0CQqIfxMFlkdX2UKGgGaAloD0MIL8IU5dJuckCUhpRSlGgVTRkBaBZHQJCopXlr/Kh1fZQoaAZoCWgPQwiR0mweR+BxQJSGlFKUaBVNBQFoFkdAkKjgG4ZuRHV9lChoBmgJaA9DCJ3ZrtCHgW9AlIaUUpRoFU0VAWgWR0CQqRvPkaMrdX2UKGgGaAloD0MIGArYDsb7cUCUhpRSlGgVS+doFkdAkKklX3g1nHV9lChoBmgJaA9DCL4xBADHK3JAlIaUUpRoFU1+AWgWR0CQqeI0IkZ8dX2UKGgGaAloD0MIWp2coTjZYkCUhpRSlGgVTegDaBZHQJCqZALRa5h1fZQoaAZoCWgPQwi21hcJbQ1QQJSGlFKUaBVL2GgWR0CQqqQo1DSgdX2UKGgGaAloD0MIfLYODrb3cECUhpRSlGgVTTwBaBZHQJCtApMHryF1fZQoaAZoCWgPQwgXD+85MFByQJSGlFKUaBVNDwFoFkdAkK2r6pHZsnV9lChoBmgJaA9DCBssnKT5rm5AlIaUUpRoFU0gAWgWR0CQrrBgNPP+dX2UKGgGaAloD0MIsHYU56jIbkCUhpRSlGgVTSwBaBZHQJCwFAs052h1fZQoaAZoCWgPQwga/P1i9qtxQJSGlFKUaBVNGwFoFkdAkLCWp6yB1HV9lChoBmgJaA9DCGFu93IfbXJAlIaUUpRoFU0FAWgWR0CQsJagVXV9dX2UKGgGaAloD0MIlX8tr9xoc0CUhpRSlGgVTQgBaBZHQJCwk3Ov+wV1fZQoaAZoCWgPQwhM++b+6nRxQJSGlFKUaBVL+2gWR0CQsMdxhlUZdX2UKGgGaAloD0MI3sZmRyrUYECUhpRSlGgVTegDaBZHQJCxPGyX2M91fZQoaAZoCWgPQwg1XU90nftxQJSGlFKUaBVNbAFoFkdAkLF8+eOGTXV9lChoBmgJaA9DCCfAsPz5F3JAlIaUUpRoFU0cAWgWR0CQsYbF0gbIdX2UKGgGaAloD0MItf6WADyjcECUhpRSlGgVTRUBaBZHQJCxmHi3ocJ1fZQoaAZoCWgPQwjA6zNnfQxuQJSGlFKUaBVNCAFoFkdAkLHrIHTqjnV9lChoBmgJaA9DCFNYqaCiHXBAlIaUUpRoFU0cAWgWR0CQstSApazNdX2UKGgGaAloD0MIVoDvNu8Qc0CUhpRSlGgVS/FoFkdAkLRAz544ZXV9lChoBmgJaA9DCAzlRLtKy3FAlIaUUpRoFUvxaBZHQJC01HAh0Qt1fZQoaAZoCWgPQwgKaCJs+F5gQJSGlFKUaBVN6ANoFkdAkLUoJzDGcXV9lChoBmgJaA9DCPROBdzzq3BAlIaUUpRoFUvxaBZHQJC2xxVAAyV1fZQoaAZoCWgPQwh7hnDMsn5xQJSGlFKUaBVL72gWR0CQtxwHJLdvdX2UKGgGaAloD0MIm+JxUS34bkCUhpRSlGgVS/VoFkdAkLd+7+T/yXV9lChoBmgJaA9DCIxLVdpi3W9AlIaUUpRoFUv8aBZHQJC3iEi+tbN1fZQoaAZoCWgPQwhfQ3BcBlZxQJSGlFKUaBVNAgFoFkdAkLiXkcS5AnV9lChoBmgJaA9DCPyrx33rGHJAlIaUUpRoFU0RAWgWR0CQuPwxFiKBdX2UKGgGaAloD0MIw2UVNgNWbkCUhpRSlGgVTQkBaBZHQJC5Rv3rUsp1fZQoaAZoCWgPQwgzUu+p3NByQJSGlFKUaBVNRAFoFkdAkLmYs/Y8MnV9lChoBmgJaA9DCOUOm8jM13FAlIaUUpRoFU0qAWgWR0CQucjAi3XqdX2UKGgGaAloD0MIQfD49q4IcECUhpRSlGgVS/toFkdAkLnyIDYAbXV9lChoBmgJaA9DCPda0Huj53JAlIaUUpRoFU1CAWgWR0CQuhOvMbFTdX2UKGgGaAloD0MIW80647tQckCUhpRSlGgVTaoBaBZHQJC6xum78Nx1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:74e05abef62ad59292cc8ea53ef5f34a7314632c2c31421ac6ebfdba1b80d17b
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a8ed18821085c30981addd106d4ad9f5faa2e2c49585574e030f4de87d3b9bf
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2b7be246c6cc92ffa25e0b546557e6a6ad8942d44dba5b381c6e43962cf9990f
3
  size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:155cc793879514ea2c3ed4540e6f7e40c36d5a38c9e6a59460e34c4f54ca3ca3
3
  size 43393
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- - Python: 3.8.16
3
  - Stable-Baselines3: 1.7.0
4
- - PyTorch: 1.13.0+cu116
5
  - GPU Enabled: True
6
  - Numpy: 1.21.6
7
  - Gym: 0.21.0
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
  - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
  - Numpy: 1.21.6
7
  - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -94.18736609774876, "std_reward": 45.55723339813994, "n_evaluation_episodes": 10, "eval_datetime": "2023-02-16T04:52:19.101328"}
 
1
+ {"mean_reward": 269.1111212588456, "std_reward": 22.804812437659123, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T04:35:39.594613"}