{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.49954187870025635, "min": 0.4777816832065582, "max": 1.363349437713623, "count": 16 }, "Pyramids.Policy.Entropy.sum": { "value": 14946.29296875, "min": 14295.2275390625, "max": 41358.5703125, "count": 16 }, "Pyramids.Step.mean": { "value": 479931.0, "min": 29989.0, "max": 479931.0, "count": 16 }, "Pyramids.Step.sum": { "value": 479931.0, "min": 29989.0, "max": 479931.0, "count": 16 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": -0.05493435263633728, "min": -0.08929532766342163, "max": 0.11173196882009506, "count": 16 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": -13.294113159179688, "min": -21.520174026489258, "max": 26.592208862304688, "count": 16 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": 0.020537864416837692, "min": 0.015147145837545395, "max": 0.32631510496139526, "count": 16 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": 4.970163345336914, "min": 3.665609359741211, "max": 78.64193725585938, "count": 16 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.067007277642242, "min": 0.06495651438137216, "max": 0.07468566069547297, "count": 16 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 0.938101886991388, "min": 0.5789700971930497, "max": 0.9920040435034007, "count": 16 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.0025039247564496337, "min": 0.0007112048412999796, "max": 0.008871167425956075, "count": 16 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.03505494659029487, "min": 0.009956867778199714, "max": 0.0709693394076486, "count": 16 }, "Pyramids.Policy.LearningRate.mean": { "value": 2.0895735891928573e-05, "min": 2.0895735891928573e-05, "max": 0.00029044552818482494, "count": 16 }, "Pyramids.Policy.LearningRate.sum": { "value": 0.000292540302487, "min": 0.000292540302487, "max": 0.003318377593874199, "count": 16 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.10696521428571429, "min": 0.10696521428571429, "max": 0.196815175, "count": 16 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.497513, "min": 1.497513, "max": 2.4061258, "count": 16 }, "Pyramids.Policy.Beta.mean": { "value": 0.0007058249071428572, "min": 0.0007058249071428572, "max": 0.009681835982500001, "count": 16 }, "Pyramids.Policy.Beta.sum": { "value": 0.009881548700000001, "min": 0.009881548700000001, "max": 0.11063196741999999, "count": 16 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.018649527803063393, "min": 0.018649527803063393, "max": 0.4523535370826721, "count": 16 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.2610933780670166, "min": 0.2610933780670166, "max": 3.618828296661377, "count": 16 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 950.0625, "min": 908.28125, "max": 993.3125, "count": 16 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 30402.0, "min": 15893.0, "max": 33151.0, "count": 16 }, "Pyramids.Environment.CumulativeReward.mean": { "value": -0.5755875497125089, "min": -0.9137643368116447, "max": -0.57160003833911, "count": 16 }, "Pyramids.Environment.CumulativeReward.sum": { "value": -18.418801590800285, "min": -29.182201765477657, "max": -13.90800078958273, "count": 16 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": -0.5755875497125089, "min": -0.9137643368116447, "max": -0.57160003833911, "count": 16 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": -18.418801590800285, "min": -29.182201765477657, "max": -13.90800078958273, "count": 16 }, "Pyramids.Policy.RndReward.mean": { "value": 0.1821828501924756, "min": 0.1821828501924756, "max": 9.211093381978571, "count": 16 }, "Pyramids.Policy.RndReward.sum": { "value": 5.829851206159219, "min": 5.78629396064207, "max": 147.37749411165714, "count": 16 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 16 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 16 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1675948434", "python_version": "3.8.10 (default, Nov 14 2022, 12:59:47) \n[GCC 9.4.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=PyramidsTraining --no-graphics", "mlagents_version": "0.29.0.dev0", "mlagents_envs_version": "0.29.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "1.8.1+cu102", "numpy_version": "1.21.6", "end_time_seconds": "1675949576" }, "total": 1141.979129558, "count": 1, "self": 0.5862056359999315, "children": { "run_training.setup": { "total": 0.1217019400000936, "count": 1, "self": 0.1217019400000936 }, "TrainerController.start_learning": { "total": 1141.271221982, "count": 1, "self": 0.7270084210058485, "children": { "TrainerController._reset_env": { "total": 6.224639921000062, "count": 1, "self": 6.224639921000062 }, "TrainerController.advance": { "total": 1134.225539800994, "count": 31593, "self": 0.7592975529930754, "children": { "env_step": { "total": 752.505427850002, "count": 31593, "self": 691.9375306370509, "children": { "SubprocessEnvManager._take_step": { "total": 60.108942763976984, "count": 31593, "self": 2.3663719869800843, "children": { "TorchPolicy.evaluate": { "total": 57.7425707769969, "count": 31308, "self": 19.33083116898706, "children": { "TorchPolicy.sample_actions": { "total": 38.41173960800984, "count": 31308, "self": 38.41173960800984 } } } } }, "workers": { "total": 0.4589544489740547, "count": 31593, "self": 0.0, "children": { "worker_root": { "total": 1138.620222788013, "count": 31593, "is_parallel": true, "self": 506.0885998520471, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.0019544179999684275, "count": 1, "is_parallel": true, "self": 0.0007022370002687239, "children": { "_process_rank_one_or_two_observation": { "total": 0.0012521809996997035, "count": 8, "is_parallel": true, "self": 0.0012521809996997035 } } }, "UnityEnvironment.step": { "total": 0.0480101040000136, "count": 1, "is_parallel": true, "self": 0.000533700999994835, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0005103430000872322, "count": 1, "is_parallel": true, "self": 0.0005103430000872322 }, "communicator.exchange": { "total": 0.04528111199988416, "count": 1, "is_parallel": true, "self": 0.04528111199988416 }, "steps_from_proto": { "total": 0.0016849480000473704, "count": 1, "is_parallel": true, "self": 0.00042015000008177594, "children": { "_process_rank_one_or_two_observation": { "total": 0.0012647979999655945, "count": 8, "is_parallel": true, "self": 0.0012647979999655945 } } } } } } }, "UnityEnvironment.step": { "total": 632.531622935966, "count": 31592, "is_parallel": true, "self": 16.095642684994573, "children": { "UnityEnvironment._generate_step_input": { "total": 11.66120515100988, "count": 31592, "is_parallel": true, "self": 11.66120515100988 }, "communicator.exchange": { "total": 554.8465329949834, "count": 31592, "is_parallel": true, "self": 554.8465329949834 }, "steps_from_proto": { "total": 49.92824210497815, "count": 31592, "is_parallel": true, "self": 11.507329051980605, "children": { "_process_rank_one_or_two_observation": { "total": 38.42091305299755, "count": 252736, "is_parallel": true, "self": 38.42091305299755 } } } } } } } } } } }, "trainer_advance": { "total": 380.960814397999, "count": 31593, "self": 1.3108012589880218, "children": { "process_trajectory": { "total": 81.9100688430076, "count": 31593, "self": 81.80934747400761, "children": { "RLTrainer._checkpoint": { "total": 0.1007213689999844, "count": 1, "self": 0.1007213689999844 } } }, "_update_policy": { "total": 297.7399442960034, "count": 220, "self": 113.1725067469979, "children": { "TorchPPOOptimizer.update": { "total": 184.5674375490055, "count": 11370, "self": 184.5674375490055 } } } } } } }, "trainer_threads": { "total": 1.0050002856587525e-06, "count": 1, "self": 1.0050002856587525e-06 }, "TrainerController._save_models": { "total": 0.09403283399979045, "count": 1, "self": 0.0019365049997759343, "children": { "RLTrainer._checkpoint": { "total": 0.09209632900001452, "count": 1, "self": 0.09209632900001452 } } } } } } }