Text Generation
Transformers
PyTorch
Italian
Inference Endpoints
File size: 4,991 Bytes
3d675db
 
82d6f1a
f22b3d4
 
 
 
92a070a
 
 
 
d0c39e4
92a070a
 
 
 
d0c39e4
 
8be35b4
92a070a
d0c39e4
92a070a
 
d0c39e4
 
 
92a070a
8be35b4
92a070a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8be35b4
92a070a
 
 
 
 
d0c39e4
92a070a
 
 
 
d0c39e4
 
92a070a
d0c39e4
92a070a
d0c39e4
92a070a
d0c39e4
92a070a
d0c39e4
 
 
 
 
 
92a070a
d0c39e4
 
 
 
 
 
92a070a
 
 
 
 
 
 
 
 
 
d0c39e4
 
 
 
92a070a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c39e4
92a070a
 
 
d0c39e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
license: other
pipeline_tag: text-generation
datasets:
- cosimoiaia/Loquace-102k
language:
- it
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
An open-source LLaMa language model of 13b parameters fine-tuned to follow instructions in italian.


### Model Description

This model is an open-source LLM of 13b parameters based on [OpenLLaMA](https://github.com/openlm-research/open_llama), an open-source replica of Meta AI's LLaMA.
The model was fine-tuned in order to follow instructions, as proposed in [Alpaca](https://github.com/tatsu-lab/stanford_alpaca), 
but using [LoRA](https://arxiv.org/pdf/2106.09685.pdf) technique and a bigger dataset of instruction/answers in italian, [cosimoiaia/Loquace-102k](https://huggingface.co/datasets/cosimoiaia/Loquace-102k/viewer/cosimoiaia--Loquace-102k).

This repository contains the model merged with the LoRA adapters obtained in the fine-tuning procedure.


- **Developed by:** Stefano Scotta (stefano.scotta@rai.it)
- **Model type:** LLM fine-tuned to follow instructions
- **Language(s) (NLP):** Italian
- **License:** [More Information Needed]
- **Finetuned from model:** [openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)


## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The model was fine-tinuned on [cosimoiaia/Loquace-102k](https://huggingface.co/datasets/cosimoiaia/Loquace-102k/viewer/cosimoiaia--Loquace-102k), a dataset of 102k question/answer pairs in italian.


### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
The fine-tuning procedure was done using [LoRA](https://arxiv.org/pdf/2106.09685.pdf) approach following closely what done for fine-tuning models like [Alpaca-LoRA](https://github.com/tloen/alpaca-lora).


#### Training Hyperparameters

 **Training setting:**
- train epochs=3,

- learning_rate=3e-4,

- optimizer="adamw_hf"

- mixed precision training: float16 

 **LoRA configuration:**
-  r= 8
  
- lora_alpha=16
  
- target_modules=["q_proj","v_proj"]

- lora_dropout=0.05
  
- bias="none"
  
- task_type=TaskType.CAUSAL_LM
  


[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** 1 NVIDIA A100/40Gb
- **Hours used:** 68
- **Cloud Provider:** Private Infrastructure
- **Carbon Emitted:** 7.34 kg eq. CO2

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

Stefano Scotta (stefano.scotta@rai.it)

## Model Card Contact

stefano.scotta@rai.it