--- license: other pipeline_tag: text-generation datasets: - cosimoiaia/Loquace-102k language: - it --- # Model Card for Model raicrits/OpenLLama13b_Loquace_ITA An open-source LLaMa language model of 13b parameters fine-tuned to follow instructions in italian. ### Model Description This model is an open-source LLM of 13b parameters based on [OpenLLaMA](https://github.com/openlm-research/open_llama), an open-source replica of Meta AI's LLaMA. The model was fine-tuned in order to follow instructions, as proposed in [Alpaca](https://github.com/tatsu-lab/stanford_alpaca), but using [LoRA](https://arxiv.org/pdf/2106.09685.pdf) technique and a bigger dataset of instruction/answers in italian, [cosimoiaia/Loquace-102k](https://huggingface.co/datasets/cosimoiaia/Loquace-102k/viewer/cosimoiaia--Loquace-102k). This repository contains the model merged with the LoRA adapters obtained in the fine-tuning procedure. - **Developed by:** Stefano Scotta (stefano.scotta@rai.it) - **Model type:** LLM fine-tuned to follow instructions - **Language(s) (NLP):** Italian - **License:** [More Information Needed] - **Finetuned from model:** [openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b) ## Uses The model can be used as is to respond to simple instructions in Italian or can be further fine-tuned to perform specific tasks. ## Bias, Risks, and Limitations As any other LLM it is possible that the model generates content which does not correspond to the reality as well as wrong, biased, offensive and inappropriate answers. ## How to Get Started with the Model **Prompt template:** ``` python "Di seguito è riportata un'istruzione che descrive un compito, abbinata a un input che fornisce un ulteriore contesto. Scrivete una risposta che completi in modo appropriato la richiesta. ### Istruzione: {instruction} ### Input: {input} ### Risposta:" ``` **Usage:** Use the code below to get started with the model. ``` python import os import torch import sys from transformers import LlamaTokenizer, LlamaForCausalLM if torch.cuda.is_available(): device = "cuda" else: device = "cpu" def generate_prompt(instruction, input=None): if input: return f"""Di seguito è riportata un'istruzione che descrive un compito, abbinata a un input che fornisce un ulteriore contesto. Scrivete una risposta che completi in modo appropriato la richiesta. ### Istruzione: {instruction} ### Input: {input} ### Risposta:""" else: return f"""Di seguito è riportata un'istruzione che descrive un compito. Scrivete una risposta che completi in modo appropriato la richiesta.. ### Istruzione: {instruction} ### Risposta:""" model_name = "raicrits/OpenLLama13b_Loquace_ITA" model = LlamaForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) tokenizer = LlamaTokenizer.from_pretrained(model_name) instruction = "qual'è la relazione tra i seguenti oggetti" input = "sedia, tavolo, divano" prompt = generate_prompt("instruction", input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_output = model.generate( input_ids=input_ids, max_new_tokens=256, ) output = tokenizer.decode(generation_output[0]) output = output.split("### Risposta:")[1].strip().replace("","") print(output) ``` ``` python "Sedia, tavolo e divano sono tutti oggetti che possono essere utilizzati per creare un'atmosfera rilassante in una stanza." ``` ## Training Details ### Training Data The model was fine-tinuned on [cosimoiaia/Loquace-102k](https://huggingface.co/datasets/cosimoiaia/Loquace-102k/viewer/cosimoiaia--Loquace-102k), a dataset of 102k question/answer pairs in italian. ### Training Procedure The fine-tuning procedure was done using [LoRA](https://arxiv.org/pdf/2106.09685.pdf) approach following closely what done for fine-tuning models like [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). #### Training Hyperparameters **Training setting:** - train epochs=3, - learning_rate=3e-4, - optimizer="adamw_hf" - mixed precision training: float16 **LoRA configuration:** - r= 8 - lora_alpha=16 - target_modules=["q_proj","v_proj"] - lora_dropout=0.05 - bias="none" - task_type=TaskType.CAUSAL_LM ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 1 NVIDIA A100/40Gb - **Hours used:** 68 - **Cloud Provider:** Private Infrastructure - **Carbon Emitted:** 7.34 kg eq. CO2 ## Model Card Authors Stefano Scotta (stefano.scotta@rai.it) ## Model Card Contact stefano.scotta@rai.it