rajammanabrolu
commited on
Commit
•
b519b19
1
Parent(s):
e4826dd
Upload tokenizer
Browse files- added_tokens.json +5 -0
- special_tokens_map.json +21 -3
- tiktoken.py +77 -4
- tokenizer_config.json +68 -1
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|im_end|>": 100279,
|
3 |
+
"<|im_start|>": 100278,
|
4 |
+
"<|pad|>": 100277
|
5 |
+
}
|
special_tokens_map.json
CHANGED
@@ -3,8 +3,26 @@
|
|
3 |
"<|im_start|>",
|
4 |
"<|im_end|>"
|
5 |
],
|
6 |
-
"bos_token":
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"pad_token": "<|pad|>",
|
9 |
-
"unk_token":
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
}
|
|
|
3 |
"<|im_start|>",
|
4 |
"<|im_end|>"
|
5 |
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
"pad_token": "<|pad|>",
|
21 |
+
"unk_token": {
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
}
|
28 |
}
|
tiktoken.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
# Copyright 2022 MosaicML LLM Foundry authors
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
|
|
4 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
5 |
|
6 |
import torch
|
7 |
from transformers import PreTrainedTokenizer
|
8 |
|
|
|
|
|
9 |
|
10 |
class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
11 |
"""A thin wrapper around tiktoken to make it compatible with Hugging Face.
|
@@ -22,11 +25,12 @@ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
|
22 |
encoding_name: Optional[str] = None,
|
23 |
add_bos_token: bool = False,
|
24 |
add_eos_token: bool = False,
|
|
|
25 |
unk_token: Optional[str] = '<|endoftext|>',
|
26 |
eos_token: Optional[str] = '<|endoftext|>',
|
27 |
bos_token: Optional[str] = '<|endoftext|>',
|
28 |
pad_token: Optional[str] = None,
|
29 |
-
**kwargs:
|
30 |
"""Constructor creates a tiktoken tokenizer to use as the underlying.
|
31 |
|
32 |
tokenizer.
|
@@ -38,6 +42,7 @@ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
|
38 |
Either model_name or encoding_name must be set, but not both.
|
39 |
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
|
40 |
add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
|
|
|
41 |
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
|
42 |
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
|
43 |
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
|
@@ -49,6 +54,23 @@ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
|
49 |
raise ImportError(
|
50 |
'You need to install tiktoken to use TiktokenTokenizerWrapper.')
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
if model_name is not None and encoding_name is not None:
|
53 |
raise ValueError(
|
54 |
'You need to specify either model_name or encoding_name, not both.'
|
@@ -69,11 +91,13 @@ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
|
69 |
|
70 |
self.add_bos_token = add_bos_token
|
71 |
self.add_eos_token = add_eos_token
|
|
|
72 |
|
73 |
super().__init__(model_name=model_name,
|
74 |
encoding_name=encoding_name,
|
75 |
add_bos_token=add_bos_token,
|
76 |
add_eos_token=add_eos_token,
|
|
|
77 |
unk_token=unk_token,
|
78 |
eos_token=eos_token,
|
79 |
bos_token=bos_token,
|
@@ -89,8 +113,39 @@ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
|
89 |
def is_fast(self) -> bool:
|
90 |
return False
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def get_vocab(self) -> Dict[str, int]:
|
93 |
-
"""Returns vocab as a dict.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
vocab = {}
|
95 |
for i in range(self.vocab_size):
|
96 |
try:
|
@@ -101,6 +156,24 @@ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
|
101 |
except KeyError:
|
102 |
pass
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
return vocab
|
105 |
|
106 |
def _tokenize(self, text: str) -> List[int]:
|
@@ -155,7 +228,7 @@ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
|
155 |
"""
|
156 |
if isinstance(ids, int):
|
157 |
if ids in self.added_tokens_decoder:
|
158 |
-
return self.added_tokens_decoder[ids]
|
159 |
|
160 |
return self._convert_id_to_token(ids)
|
161 |
|
@@ -171,7 +244,7 @@ class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
|
171 |
if index in self.added_tokens_decoder:
|
172 |
tokens.append(self.encoding.decode(current_stream))
|
173 |
current_stream = []
|
174 |
-
tokens.append(self.added_tokens_decoder[index])
|
175 |
else:
|
176 |
current_stream.append(index)
|
177 |
|
|
|
1 |
# Copyright 2022 MosaicML LLM Foundry authors
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
+
import warnings
|
5 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
6 |
|
7 |
import torch
|
8 |
from transformers import PreTrainedTokenizer
|
9 |
|
10 |
+
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible."""
|
11 |
+
|
12 |
|
13 |
class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
14 |
"""A thin wrapper around tiktoken to make it compatible with Hugging Face.
|
|
|
25 |
encoding_name: Optional[str] = None,
|
26 |
add_bos_token: bool = False,
|
27 |
add_eos_token: bool = False,
|
28 |
+
use_default_system_prompt: bool = False,
|
29 |
unk_token: Optional[str] = '<|endoftext|>',
|
30 |
eos_token: Optional[str] = '<|endoftext|>',
|
31 |
bos_token: Optional[str] = '<|endoftext|>',
|
32 |
pad_token: Optional[str] = None,
|
33 |
+
**kwargs: Any):
|
34 |
"""Constructor creates a tiktoken tokenizer to use as the underlying.
|
35 |
|
36 |
tokenizer.
|
|
|
42 |
Either model_name or encoding_name must be set, but not both.
|
43 |
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
|
44 |
add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
|
45 |
+
use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False.
|
46 |
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
|
47 |
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
|
48 |
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
|
|
|
54 |
raise ImportError(
|
55 |
'You need to install tiktoken to use TiktokenTokenizerWrapper.')
|
56 |
|
57 |
+
# Workaround to make tiktokenizer picklable.
|
58 |
+
# https://github.com/huggingface/datasets/issues/5536#issuecomment-1682309347
|
59 |
+
# There is an open PR from HF to add this to tiktoken: https://github.com/openai/tiktoken/pull/181
|
60 |
+
import copyreg
|
61 |
+
import functools
|
62 |
+
|
63 |
+
from tiktoken import Encoding # type: ignore (thirdParty)
|
64 |
+
|
65 |
+
def pickle_Encoding(enc: Encoding):
|
66 |
+
return (functools.partial(Encoding,
|
67 |
+
enc.name,
|
68 |
+
pat_str=enc._pat_str,
|
69 |
+
mergeable_ranks=enc._mergeable_ranks,
|
70 |
+
special_tokens=enc._special_tokens), ())
|
71 |
+
|
72 |
+
copyreg.pickle(Encoding, pickle_Encoding)
|
73 |
+
|
74 |
if model_name is not None and encoding_name is not None:
|
75 |
raise ValueError(
|
76 |
'You need to specify either model_name or encoding_name, not both.'
|
|
|
91 |
|
92 |
self.add_bos_token = add_bos_token
|
93 |
self.add_eos_token = add_eos_token
|
94 |
+
self.use_default_system_prompt = use_default_system_prompt
|
95 |
|
96 |
super().__init__(model_name=model_name,
|
97 |
encoding_name=encoding_name,
|
98 |
add_bos_token=add_bos_token,
|
99 |
add_eos_token=add_eos_token,
|
100 |
+
use_default_system_prompt=use_default_system_prompt,
|
101 |
unk_token=unk_token,
|
102 |
eos_token=eos_token,
|
103 |
bos_token=bos_token,
|
|
|
113 |
def is_fast(self) -> bool:
|
114 |
return False
|
115 |
|
116 |
+
@property
|
117 |
+
def default_chat_template(self):
|
118 |
+
"""Chat ML Template for User/Assistant.
|
119 |
+
|
120 |
+
Pinning default Chat ML template in case defaults change.
|
121 |
+
"""
|
122 |
+
template = (
|
123 |
+
"{% set system_message = '' %}"
|
124 |
+
'{% if USE_DEFAULT_PROMPT == true %}'
|
125 |
+
"{{'<|im_start|>system\n' + 'DEFAULT_SYSTEM_PROMPT'}}"
|
126 |
+
'{% endif %}'
|
127 |
+
'{% for message in messages %}'
|
128 |
+
"{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
|
129 |
+
'{% endfor %}')
|
130 |
+
template = template.replace(
|
131 |
+
'USE_DEFAULT_PROMPT',
|
132 |
+
'true' if self.use_default_system_prompt else 'false')
|
133 |
+
template = template.replace('DEFAULT_SYSTEM_PROMPT',
|
134 |
+
DEFAULT_SYSTEM_PROMPT)
|
135 |
+
return template
|
136 |
+
|
137 |
def get_vocab(self) -> Dict[str, int]:
|
138 |
+
"""Returns vocab as a dict.
|
139 |
+
|
140 |
+
Note: This function does not work properly due to difference in assumptions between tiktoken and Hugging Face tokenizers.
|
141 |
+
Most uses do not need to use get_vocab, so this is not a priority to fix.
|
142 |
+
"""
|
143 |
+
warnings.warn(
|
144 |
+
'get_vocab does not work properly with TiktokenTokenizerWrapper. Please do not rely on it being perfectly correct.'
|
145 |
+
+
|
146 |
+
' It will be called once init just to get the size of the vocab inside the base class.'
|
147 |
+
)
|
148 |
+
|
149 |
vocab = {}
|
150 |
for i in range(self.vocab_size):
|
151 |
try:
|
|
|
156 |
except KeyError:
|
157 |
pass
|
158 |
|
159 |
+
# As far as I can tell, we don't require get_vocab to completely work,
|
160 |
+
# but when using additional_special_tokens, Hugging Face determines the next
|
161 |
+
# token index to add with len(self.get_vocab()) so we need the _size_ of this dictionary to be correct.
|
162 |
+
extra_id_index = 0
|
163 |
+
candidate_extra_id = f'<extra_id_{extra_id_index}>'
|
164 |
+
indices_to_fill_in = {i for i in range(self.vocab_size)} - set(
|
165 |
+
vocab.values())
|
166 |
+
|
167 |
+
# Add enough indices to make get_vocab() the right length
|
168 |
+
for index_to_add in indices_to_fill_in:
|
169 |
+
# Make sure we don't overwrite a token that already exists
|
170 |
+
while candidate_extra_id in vocab:
|
171 |
+
extra_id_index += 1
|
172 |
+
candidate_extra_id = f'<extra_id_{extra_id_index}>'
|
173 |
+
|
174 |
+
# Get an index to add and add the item
|
175 |
+
vocab[candidate_extra_id] = index_to_add
|
176 |
+
|
177 |
return vocab
|
178 |
|
179 |
def _tokenize(self, text: str) -> List[int]:
|
|
|
228 |
"""
|
229 |
if isinstance(ids, int):
|
230 |
if ids in self.added_tokens_decoder:
|
231 |
+
return str(self.added_tokens_decoder[ids])
|
232 |
|
233 |
return self._convert_id_to_token(ids)
|
234 |
|
|
|
244 |
if index in self.added_tokens_decoder:
|
245 |
tokens.append(self.encoding.decode(current_stream))
|
246 |
current_stream = []
|
247 |
+
tokens.append(str(self.added_tokens_decoder[index]))
|
248 |
else:
|
249 |
current_stream.append(index)
|
250 |
|
tokenizer_config.json
CHANGED
@@ -2,6 +2,72 @@
|
|
2 |
"add_bos_token": false,
|
3 |
"add_eos_token": false,
|
4 |
"add_prefix_space": false,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"additional_special_tokens": [
|
6 |
"<|im_start|>",
|
7 |
"<|im_end|>"
|
@@ -20,5 +86,6 @@
|
|
20 |
"model_name": "gpt-3.5-turbo",
|
21 |
"pad_token": "<|pad|>",
|
22 |
"tokenizer_class": "TiktokenTokenizerWrapper",
|
23 |
-
"unk_token": "<|endoftext|>"
|
|
|
24 |
}
|
|
|
2 |
"add_bos_token": false,
|
3 |
"add_eos_token": false,
|
4 |
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"100257": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"100258": {
|
15 |
+
"content": "<|fim_prefix|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"100259": {
|
23 |
+
"content": "<|fim_middle|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"100260": {
|
31 |
+
"content": "<|fim_suffix|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"100276": {
|
39 |
+
"content": "<|endofprompt|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"100277": {
|
47 |
+
"content": "<|pad|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"100278": {
|
55 |
+
"content": "<|im_start|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"100279": {
|
63 |
+
"content": "<|im_end|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
}
|
70 |
+
},
|
71 |
"additional_special_tokens": [
|
72 |
"<|im_start|>",
|
73 |
"<|im_end|>"
|
|
|
86 |
"model_name": "gpt-3.5-turbo",
|
87 |
"pad_token": "<|pad|>",
|
88 |
"tokenizer_class": "TiktokenTokenizerWrapper",
|
89 |
+
"unk_token": "<|endoftext|>",
|
90 |
+
"use_default_system_prompt": false
|
91 |
}
|