# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 from functools import lru_cache from typing import Any, Dict, List, Optional, Tuple import torch from transformers import PreTrainedTokenizer DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible.""" # Taken from # https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84 @lru_cache() def bytes_to_unicode(): """Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = (list(range(ord('!'), ord('~') + 1)) + list(range(ord('¡'), ord('¬') + 1)) + list(range(ord('®'), ord('ÿ') + 1))) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) class TiktokenTokenizerWrapper(PreTrainedTokenizer): """A thin wrapper around tiktoken to make it compatible with Hugging Face. tokenizers. See HuggingFace for further documentation on general tokenizer methods. """ model_input_names = ['input_ids', 'attention_mask'] def __init__(self, model_name: Optional[str] = None, encoding_name: Optional[str] = None, add_bos_token: bool = False, add_eos_token: bool = False, use_default_system_prompt: bool = False, unk_token: Optional[str] = '<|endoftext|>', eos_token: Optional[str] = '<|endoftext|>', bos_token: Optional[str] = '<|endoftext|>', pad_token: Optional[str] = None, errors: str = 'replace', **kwargs: Any): """Constructor creates a tiktoken tokenizer to use as the underlying. tokenizer. Args: model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None. Either model_name or encoding_name must be set, but not both. encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None. Either model_name or encoding_name must be set, but not both. add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False. add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False. use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False. unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'. eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'. bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'. pad_token (Optional[str], optional): The pad token. Defaults to None. errors (str, optional): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. Defaults to `"replace"`. """ try: import tiktoken except: raise ImportError( 'You need to install tiktoken to use TiktokenTokenizerWrapper.') # Workaround to make tiktokenizer picklable. # https://github.com/huggingface/datasets/issues/5536#issuecomment-1682309347 # There is an open PR from HF to add this to tiktoken: https://github.com/openai/tiktoken/pull/181 import copyreg import functools from tiktoken import Encoding # type: ignore (thirdParty) def pickle_Encoding(enc: Encoding): return (functools.partial(Encoding, enc.name, pat_str=enc._pat_str, mergeable_ranks=enc._mergeable_ranks, special_tokens=enc._special_tokens), ()) copyreg.pickle(Encoding, pickle_Encoding) if model_name is not None and encoding_name is not None: raise ValueError( 'You need to specify either model_name or encoding_name, not both.' ) self.model_name = model_name self.encoding_name = encoding_name if self.model_name is not None: self.encoding = tiktoken.encoding_for_model( # type: ignore (thirdParty) self.model_name) elif self.encoding_name is not None: self.encoding = tiktoken.get_encoding( # type: ignore (thirdParty) self.encoding_name) else: raise ValueError( 'You need to specify either model_name or encoding_name.') self.add_bos_token = add_bos_token self.add_eos_token = add_eos_token self.use_default_system_prompt = use_default_system_prompt self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} self.errors = errors self.decoder: Dict[int, str] = {} for i in range(self.encoding.n_vocab): try: self.encoding.decode_single_token_bytes(i) except KeyError: continue # Taken from # https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee decoding = ''.join([ bytes_to_unicode()[ord(char)] for char in self.encoding.decode_single_token_bytes(i).decode('latin-1') ]) self.decoder[i] = decoding self.encoder: Dict[str, int] = {} for i in range(self.encoding.n_vocab): if i in self.decoder: self.encoder[self.decoder[i]] = i super().__init__(model_name=model_name, encoding_name=encoding_name, add_bos_token=add_bos_token, add_eos_token=add_eos_token, use_default_system_prompt=use_default_system_prompt, unk_token=unk_token, eos_token=eos_token, bos_token=bos_token, pad_token=pad_token, errors=errors, **kwargs) @property def vocab_size(self) -> int: """Returns vocab size.""" return self.encoding.n_vocab @property def is_fast(self) -> bool: return False @property def default_chat_template(self): """Chat ML Template for User/Assistant. Pinning default Chat ML template in case defaults change. """ template = ( "{% if messages[0]['role'] == 'system' %}" '{% set loop_messages = messages[1:] %}' "{% set system_message = messages[0]['content'] %}" "{% elif USE_DEFAULT_PROMPT == true and not 'system' in messages[0]['role'] %}" '{% set loop_messages = messages %}' "{% set system_message = 'DEFAULT_SYSTEM_PROMPT' %}" '{% else %}' '{% set loop_messages = messages %}' '{% set system_message = false %}' '{% endif %}' '{% for message in loop_messages %}' '{% if loop.index0 == 0 %}' '{% if system_message != false %}' "{{ '<|im_start|>system\n' + system_message.strip() + '<|im_end|>\n'}}" '{% endif %}' "{{ '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' }}" '{% else %}' "{{ '\n' + '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' }}" '{% endif %}' '{% if (add_generation_prompt == true) %}' "{{ '\n' + '<|im_start|>' + 'assistant' + '\n' }}" "{% elif (message['role'] == 'assistant') %}" '{{ eos_token }}' '{% endif %}' '{% endfor %}') template = template.replace( 'USE_DEFAULT_PROMPT', 'true' if self.use_default_system_prompt else 'false') template = template.replace('DEFAULT_SYSTEM_PROMPT', DEFAULT_SYSTEM_PROMPT) return template def get_vocab(self) -> Dict[str, int]: """Returns vocab as a dict.""" # As far as I can tell, we don't require get_vocab to completely work, # but when using additional_special_tokens, Hugging Face determines the next # token index to add with len(self.get_vocab()) so we need the _size_ of this dictionary to be correct. vocab_clone = self.encoder.copy() extra_id_index = 0 candidate_extra_id = f'' indices_to_fill_in = {i for i in range(self.vocab_size)} - set( vocab_clone.values()) # Add enough indices to make get_vocab() the right length for index_to_add in indices_to_fill_in: # Make sure we don't overwrite a token that already exists while candidate_extra_id in vocab_clone: extra_id_index += 1 candidate_extra_id = f'' # Get an index to add and add the item vocab_clone[candidate_extra_id] = index_to_add return vocab_clone def _tokenize(self, text: str) -> List[str]: """Returns a tokenized string.""" if not isinstance(text, str): raise ValueError( f'Expected a string input to _tokenize but got {type(text)}.') tokens = [ self.decoder[t] for t in self.encoding.encode(text, allowed_special='all') ] return tokens def _convert_token_to_id(self, token: str) -> Optional[int]: """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> Optional[str]: """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Converts a sequence of tokens (string) in a single string.""" text = ''.join(tokens) text = bytearray([self.byte_decoder[c] for c in text ]).decode('utf-8', errors=self.errors) return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]: bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) -> List[int]: """Retrieves sequence ids from a token list that has no special tokens. Function copied from https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295 added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True) bos_token_id = [1] if self.add_bos_token else [] eos_token_id = [1] if self.add_eos_token else [] if token_ids_1 is None: return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]: sep = [self.sep_token_id] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: # ignore the below type to keep the original signature # we are knowingly breaking the signature here, although not 100% certain # it doesn't have side effects # There is some code in huggingface that calls this function to get the vocab files, # but it doesn't seem to access them (or at least checks for their existence # before accessing them) return (None, None) # type: ignore def sanitize_special_tokens(self) -> int: """Make sure that all the special tokens attributes of the tokenizer. (`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the vocabulary. Add the missing ones to the vocabulary if needed. Return: `int`: The number of tokens added in the vocabulary during the operation. """ actual_new_tokens = [] for token in self.all_special_tokens_extended: encoded = self.encoding.encode(token, allowed_special='all') if len(encoded) > 1: actual_new_tokens.append(token) return self.add_tokens(actual_new_tokens, special_tokens=True) def construct_logit_tensor(self, logprobs: Dict[str, float]) -> torch.Tensor: """Construct tensor of shape (vocab_size,) mapping words to logprobs. Args: logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model. """ tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size)) for k in logprobs: encoding = self(k)['input_ids'] idx = encoding[0] tensor[idx] = logprobs[k] return tensor TiktokenTokenizerWrapper.register_for_auto_class()