rajatkrishna commited on
Commit
c17fbf3
1 Parent(s): 24f9138

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -1,5 +1,45 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  license: other
3
  license_name: llama3
4
  license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - facebook
7
+ - meta
8
+ - openvino
9
+ - llama
10
+ - llama-3
11
  license: other
12
  license_name: llama3
13
  license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
14
+ base_model: meta-llama/Meta-Llama-3-8B
15
  ---
16
+ # Meta-Llama-3-8B INT4 Quantized
17
+
18
+ - INT-4 quantized version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) created using OpenVINO
19
+
20
+ ## Model Details
21
+
22
+ Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks.
23
+
24
+ **Model developers** Meta
25
+
26
+ **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
27
+
28
+ **Input** Models input text only.
29
+
30
+ **Output** Models generate text and code only.
31
+
32
+ **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
33
+
34
+ **Model Release Date** April 18, 2024.
35
+
36
+ ## Usage
37
+
38
+ ```python
39
+ >>> from transformers import AutoTokenizer, pipeline
40
+ >>> from optimum.intel.openvino import OVModelForCausalLM
41
+ >>> model_name = 'rajatkrishna/Meta-Llama-3-8B-OpenVINO-INT4'
42
+ >>> model = OVModelForCausalLM.from_pretrained(model_name)
43
+ >>> pipe = pipeline("text-generation", model=model, tokenizer=model_name)
44
+ >>> pipe("Hey how are you doing today?")
45
+ ```