rajistics commited on
Commit
f9ab02d
1 Parent(s): bcf95f9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cord-layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-cord_800
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cord-layoutlmv3
20
+ type: cord-layoutlmv3
21
+ config: cord
22
+ split: train
23
+ args: cord
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9445266272189349
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9558383233532934
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9501488095238095
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9605263157894737
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-cord_800
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2042
47
+ - Precision: 0.9445
48
+ - Recall: 0.9558
49
+ - F1: 0.9501
50
+ - Accuracy: 0.9605
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 5
71
+ - eval_batch_size: 5
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 4000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.56 | 250 | 0.9737 | 0.7787 | 0.8166 | 0.7972 | 0.8188 |
82
+ | 1.3706 | 3.12 | 500 | 0.5489 | 0.8480 | 0.8645 | 0.8562 | 0.8680 |
83
+ | 1.3706 | 4.69 | 750 | 0.3857 | 0.8913 | 0.9087 | 0.8999 | 0.9147 |
84
+ | 0.3693 | 6.25 | 1000 | 0.3192 | 0.9117 | 0.9274 | 0.9195 | 0.9317 |
85
+ | 0.3693 | 7.81 | 1250 | 0.2816 | 0.9189 | 0.9326 | 0.9257 | 0.9355 |
86
+ | 0.1903 | 9.38 | 1500 | 0.2521 | 0.9277 | 0.9409 | 0.9342 | 0.9465 |
87
+ | 0.1903 | 10.94 | 1750 | 0.2353 | 0.9357 | 0.9476 | 0.9416 | 0.9550 |
88
+ | 0.1231 | 12.5 | 2000 | 0.2361 | 0.9293 | 0.9446 | 0.9369 | 0.9516 |
89
+ | 0.1231 | 14.06 | 2250 | 0.2194 | 0.9402 | 0.9528 | 0.9465 | 0.9576 |
90
+ | 0.0766 | 15.62 | 2500 | 0.2133 | 0.9416 | 0.9528 | 0.9472 | 0.9580 |
91
+ | 0.0766 | 17.19 | 2750 | 0.2117 | 0.9438 | 0.9558 | 0.9498 | 0.9597 |
92
+ | 0.0585 | 18.75 | 3000 | 0.2152 | 0.9417 | 0.9551 | 0.9483 | 0.9605 |
93
+ | 0.0585 | 20.31 | 3250 | 0.2070 | 0.9431 | 0.9551 | 0.9491 | 0.9588 |
94
+ | 0.0454 | 21.88 | 3500 | 0.2093 | 0.9489 | 0.9588 | 0.9538 | 0.9622 |
95
+ | 0.0454 | 23.44 | 3750 | 0.2034 | 0.9453 | 0.9566 | 0.9509 | 0.9610 |
96
+ | 0.0409 | 25.0 | 4000 | 0.2042 | 0.9445 | 0.9558 | 0.9501 | 0.9605 |
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.21.2
102
+ - Pytorch 1.12.1+cu113
103
+ - Datasets 2.4.0
104
+ - Tokenizers 0.12.1