rambaldi47 commited on
Commit
38d5ee4
1 Parent(s): 10882df

End of training

Browse files
Files changed (2) hide show
  1. README.md +83 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ base_model: MIT/ast-finetuned-audioset-10-10-0.4593
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.95
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2195
36
+ - Accuracy: 0.95
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 4
57
+ - eval_batch_size: 4
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 7
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.2848 | 1.0 | 225 | 0.9028 | 0.69 |
70
+ | 0.4115 | 2.0 | 450 | 0.4838 | 0.82 |
71
+ | 0.0998 | 3.0 | 675 | 0.7073 | 0.85 |
72
+ | 0.0733 | 4.0 | 900 | 0.2571 | 0.91 |
73
+ | 0.0007 | 5.0 | 1125 | 0.5134 | 0.9 |
74
+ | 0.0001 | 6.0 | 1350 | 0.2031 | 0.95 |
75
+ | 0.0001 | 7.0 | 1575 | 0.2195 | 0.95 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.38.0.dev0
81
+ - Pytorch 2.1.2
82
+ - Datasets 2.16.1
83
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:caf3eef9200ee715facd8b3c5c2791e5069de4d4aa6d3e6f88e97598ed34966a
3
  size 344814656
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60b4c4ea0ad56319e0427190574e5ef7d60d9be6b1a3d12982ed1b69799bb0ad
3
  size 344814656