Push LunarLander-v2 model
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +24 -24
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 277.12 +/- 10.25
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fab142cedc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab142cee50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab142ceee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab142cef70>", "_build": "<function ActorCriticPolicy._build at 0x7fab142d2040>", "forward": "<function ActorCriticPolicy.forward at 0x7fab142d20d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fab142d2160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab142d21f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fab142d2280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab142d2310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab142d23a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab142d2430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fab142cd3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675896016842138319, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAegj2kVzK7eosjvKlvIzxBoJC8esMRPQAAgD8AAIA/jd+sva9cjD/q6BO9pyfBvjAwMr5jJPw8AAAAAAAAAADNbKA6eyqIurMpGLTJC0KvsC+1t7OSpTMAAIA/AACAP8AENT4HcQo+5m3vvQadPb7iePQ7Rs+UOwAAAAAAAAAAZvAdPFwPETkQGxc5CXRsMzqsALxWcTW4AACAPwAAgD8AbNI7Rt/XPucbij1arWu+SmU0Peo/e70AAAAAAAAAADNzzrsksWc/VawBPSCre76UL+684hMpvQAAAAAAAAAAOuYLPpJ2Oz5YXi09EAhtvmR8hD0Sj5g7AAAAAAAAAACAv7E9jzJxuoWM9ba76iwzfAiDu6NSDzYAAIA/AACAPwa6BD6mKZ0+vEIHvg+UOr7rnGS9xrqaPQAAAAAAAAAAWjStPRRkvrp+3Pc2zUvZMRS3n7g/NA22AACAPwAAgD/A95w9SNOqumudkTg3fXEz05FuurrQprcAAIA/AAAAALZA2D7ys3w/275QPc63pr6HzYs+Sl8KvgAAAAAAAAAATe8qPfZDfDsZsog9RUABvgR5Gj2GqDe9AAAAAAAAAAAAcpy9u2wkPxInET6zFIa+E1T9PNd8Aj0AAAAAAAAAAAbJKD6PLmg9XSStvak8xr3tCF48uj0JPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsRpLWFsqcUCUhpRSlIwBbJRNTwGMAXSUR0CS2G2HLzPKdX2UKGgGaAloD0MIMjz2s9jYbkCUhpRSlGgVTVYBaBZHQJLYgIJJGvx1fZQoaAZoCWgPQwgpsACmjKxrQJSGlFKUaBVNXQFoFkdAktjpItlI3HV9lChoBmgJaA9DCA74/DDCSXBAlIaUUpRoFU1RAWgWR0CS2ddGAkLQdX2UKGgGaAloD0MI4c6Fkd70bUCUhpRSlGgVTdIBaBZHQJLa1FfAsTZ1fZQoaAZoCWgPQwg49BYP70RvQJSGlFKUaBVNbgFoFkdAkttG2w3YMHV9lChoBmgJaA9DCDYf14YKTHFAlIaUUpRoFU1RAWgWR0CS3OBX0XgtdX2UKGgGaAloD0MI6BN5kvTScUCUhpRSlGgVTZEBaBZHQJLeihdt2s91fZQoaAZoCWgPQwhtjQjGgRpxQJSGlFKUaBVNrAFoFkdAkt6FAJLM93V9lChoBmgJaA9DCF9AL9w51HFAlIaUUpRoFU14AWgWR0CS4Bwwj+rEdX2UKGgGaAloD0MIARb59UO8bUCUhpRSlGgVTVgBaBZHQJLgRr2xptd1fZQoaAZoCWgPQwjlJmppbnJyQJSGlFKUaBVNZgFoFkdAkuCMz2vjfnV9lChoBmgJaA9DCOrsZHBUOHBAlIaUUpRoFU1EAWgWR0CS4hac7QsxdX2UKGgGaAloD0MIyo0ia438bUCUhpRSlGgVTVoBaBZHQJLiIHcDbJx1fZQoaAZoCWgPQwjyCdl5G6hvQJSGlFKUaBVNPgFoFkdAkvkgFgUlA3V9lChoBmgJaA9DCE57Ss4JdXFAlIaUUpRoFU1bAWgWR0CS+gMOPNmldX2UKGgGaAloD0MI1SKimDyebECUhpRSlGgVTWYBaBZHQJL6hRR/EwZ1fZQoaAZoCWgPQwizfchbrjJoQJSGlFKUaBVNVwFoFkdAkvrhHXmNi3V9lChoBmgJaA9DCNYCe0ykUWxAlIaUUpRoFU1ZAWgWR0CS++4NI9TxdX2UKGgGaAloD0MIXrwft99VbkCUhpRSlGgVTScBaBZHQJL8FOM2m511fZQoaAZoCWgPQwixUkFFVb5uQJSGlFKUaBVNTwFoFkdAkv9KaCtihHV9lChoBmgJaA9DCB7+mqzRiWxAlIaUUpRoFU1XAWgWR0CS/6j5sTFmdX2UKGgGaAloD0MIZyrEI3HsbkCUhpRSlGgVTUIBaBZHQJMAvhFVktp1fZQoaAZoCWgPQwixGeCCrKBxQJSGlFKUaBVNUwFoFkdAkwDydFvyb3V9lChoBmgJaA9DCLgE4J9SmVlAlIaUUpRoFU3oA2gWR0CTAY9q1w5vdX2UKGgGaAloD0MIQZqxaDq4b0CUhpRSlGgVTWgBaBZHQJMB54TsY2t1fZQoaAZoCWgPQwgpJm+AWZBxQJSGlFKUaBVNSAFoFkdAkwLS/0ulGnV9lChoBmgJaA9DCKc+kLxzsmxAlIaUUpRoFU1uAWgWR0CTBQPPLPlddX2UKGgGaAloD0MIJJwWvOh1V0CUhpRSlGgVTegDaBZHQJMFqhxo7FN1fZQoaAZoCWgPQwjct1onLo1vQJSGlFKUaBVNKAFoFkdAkwZKg/Tsp3V9lChoBmgJaA9DCMsvgzFixHBAlIaUUpRoFU2BAmgWR0CTComyxA0LdX2UKGgGaAloD0MIX9ODgtIwb0CUhpRSlGgVTWIBaBZHQJMKnUpd8iR1fZQoaAZoCWgPQwjl7J3R1utxQJSGlFKUaBVNUgFoFkdAkwrXXI2fkHV9lChoBmgJaA9DCF9BmrHo5m9AlIaUUpRoFU1IAWgWR0CTC+HIZIhAdX2UKGgGaAloD0MIS+guifNocUCUhpRSlGgVTW0BaBZHQJMNl93KSxJ1fZQoaAZoCWgPQwhFD3wM1spsQJSGlFKUaBVNlgFoFkdAkw4IDoyKvXV9lChoBmgJaA9DCHS2gNB64W1AlIaUUpRoFU09AWgWR0CTD3sV+I/JdX2UKGgGaAloD0MIvRqgNJR4cUCUhpRSlGgVTUoBaBZHQJMSKfkFOfx1fZQoaAZoCWgPQwgArI4caZJvQJSGlFKUaBVNZQFoFkdAkxIrv1DjR3V9lChoBmgJaA9DCOBL4UGzim5AlIaUUpRoFU1CAWgWR0CTEuhnJ1aGdX2UKGgGaAloD0MIsd6oFaYQb0CUhpRSlGgVTVkBaBZHQJMTQ9Oh0yR1fZQoaAZoCWgPQwhvufqxyTVuQJSGlFKUaBVNbAFoFkdAkxZM90RvnHV9lChoBmgJaA9DCGvSbYnc6nBAlIaUUpRoFU0/AWgWR0CTFnjSXt0FdX2UKGgGaAloD0MI2xfQC/fSb0CUhpRSlGgVTYEBaBZHQJMYt6t1ZDB1fZQoaAZoCWgPQwgj9Z7K6Q5vQJSGlFKUaBVNdgFoFkdAkxksPatcOnV9lChoBmgJaA9DCGVUGcZd33FAlIaUUpRoFU02AWgWR0CTGsYoy9EkdX2UKGgGaAloD0MIIsFUM2sZa0CUhpRSlGgVTVEBaBZHQJMbH863iJh1fZQoaAZoCWgPQwjLLhhcMwRxQJSGlFKUaBVNXQFoFkdAkxtnZPEbYXV9lChoBmgJaA9DCDigpStYfWtAlIaUUpRoFU1dAWgWR0CTG3mcvugIdX2UKGgGaAloD0MIk6espuvycECUhpRSlGgVTVcBaBZHQJMdrQAuIyl1fZQoaAZoCWgPQwhi83FtqN5sQJSGlFKUaBVNewFoFkdAkx7MJ6Y3N3V9lChoBmgJaA9DCOeoo+OqhHFAlIaUUpRoFU0/AWgWR0CTH8nQ6ZH/dX2UKGgGaAloD0MIb/Wc9L59NMCUhpRSlGgVTSsBaBZHQJMfynVG0/p1fZQoaAZoCWgPQwj43XTLjkRrQJSGlFKUaBVNiwFoFkdAkyDWOIZZS3V9lChoBmgJaA9DCADHnj2X1nBAlIaUUpRoFU1ZAWgWR0CTIUisny/cdX2UKGgGaAloD0MICiyAKYMab0CUhpRSlGgVTa4CaBZHQJMiUUDdP+J1fZQoaAZoCWgPQwjaAGxABElsQJSGlFKUaBVNUgFoFkdAkyPJn6Eal3V9lChoBmgJaA9DCCJseHql5W5AlIaUUpRoFU2KAWgWR0CTOXApKBd2dX2UKGgGaAloD0MIgqs8gXBKcUCUhpRSlGgVTU4BaBZHQJM7k6q814x1fZQoaAZoCWgPQwj75ZMVQztvQJSGlFKUaBVNdgFoFkdAkzur8zhxYXV9lChoBmgJaA9DCOhKBKq/TnJAlIaUUpRoFU1HAWgWR0CTO/YI0IkadX2UKGgGaAloD0MIkq8EUmLRbUCUhpRSlGgVTU0BaBZHQJM8IukDZDl1fZQoaAZoCWgPQwjqCOBmcbNsQJSGlFKUaBVNXAFoFkdAkzx2e+VTrHV9lChoBmgJaA9DCHr83qZ/zXFAlIaUUpRoFU2ZAWgWR0CTPJIDHOrydX2UKGgGaAloD0MIy0dS0oMicECUhpRSlGgVTUIBaBZHQJM+B3C9AX51fZQoaAZoCWgPQwjhDWlUYNltQJSGlFKUaBVNPAFoFkdAkz8jxCpm3HV9lChoBmgJaA9DCP5IERlWs29AlIaUUpRoFU1YAWgWR0CTQeTN+so2dX2UKGgGaAloD0MIAcPy59sncECUhpRSlGgVTWwBaBZHQJNC/1L8Jld1fZQoaAZoCWgPQwh6xVOPdH5xQJSGlFKUaBVNYQFoFkdAk0PkRBeHBXV9lChoBmgJaA9DCJX0MLR6yHBAlIaUUpRoFU0/AWgWR0CTRDHAAQxvdX2UKGgGaAloD0MIWycux6vicUCUhpRSlGgVTU0BaBZHQJNHDpV0cOt1fZQoaAZoCWgPQwhXzAhvD+huQJSGlFKUaBVNFwNoFkdAk0j916mfoXV9lChoBmgJaA9DCBrCMcseB21AlIaUUpRoFU10AWgWR0CTTPMF2V3VdX2UKGgGaAloD0MITkaVYRyhcECUhpRSlGgVTUQBaBZHQJNNN9qk/KR1fZQoaAZoCWgPQwhljA+z1yRxQJSGlFKUaBVNOAFoFkdAk03y9Zid8XV9lChoBmgJaA9DCNqQf2YQVG5AlIaUUpRoFU08AWgWR0CTTgT0QK8ddX2UKGgGaAloD0MIWB6kp4gCcUCUhpRSlGgVTUoBaBZHQJNOV2FFlTZ1fZQoaAZoCWgPQwjlYaHWNCNxQJSGlFKUaBVNYgFoFkdAk07xusLfDXV9lChoBmgJaA9DCHCxogbT6m5AlIaUUpRoFU0eAmgWR0CTUAugpSaWdX2UKGgGaAloD0MIgCiYMQWGb0CUhpRSlGgVTXsBaBZHQJNQu5WilBR1fZQoaAZoCWgPQwjlJ9U+XWVwQJSGlFKUaBVNSgFoFkdAk1DawMYuTXV9lChoBmgJaA9DCOYivhOz9G5AlIaUUpRoFU1fAWgWR0CTUil+mWMTdX2UKGgGaAloD0MI7niT36LackCUhpRSlGgVTSYBaBZHQJNTHvLHMll1fZQoaAZoCWgPQwhMiLmk6khwQJSGlFKUaBVNXwFoFkdAk1R0iliz9nV9lChoBmgJaA9DCDCEnPd/5G9AlIaUUpRoFU1LAWgWR0CTVIeRxLkCdX2UKGgGaAloD0MIPGnhsorocECUhpRSlGgVTV0BaBZHQJNXHV7Qb+91fZQoaAZoCWgPQwgdOdIZGGBuQJSGlFKUaBVNUgFoFkdAk1gJuVHFxXV9lChoBmgJaA9DCHxFt15T7nBAlIaUUpRoFU3XAWgWR0CTWDxyGSIQdX2UKGgGaAloD0MIcJaS5aT2b0CUhpRSlGgVTT8BaBZHQJNZktVaOgh1fZQoaAZoCWgPQwggKo2Y2XxtQJSGlFKUaBVNSAFoFkdAk1qQFHJ9zHV9lChoBmgJaA9DCPqAQGcS1nBAlIaUUpRoFU1yAWgWR0CTW9Aksz2wdX2UKGgGaAloD0MI2a873flIcUCUhpRSlGgVTUYBaBZHQJNb9N8E3bV1fZQoaAZoCWgPQwicbW5MT0FxQJSGlFKUaBVNcwFoFkdAk1yOY+jdpXV9lChoBmgJaA9DCL9+iA3WOXBAlIaUUpRoFU1UAWgWR0CTXRbCrLhadX2UKGgGaAloD0MIZVQZxh2FcECUhpRSlGgVTWoBaBZHQJNeHoC+10F1fZQoaAZoCWgPQwjNrRBW45lrQJSGlFKUaBVNVwFoFkdAk179LxqfvnV9lChoBmgJaA9DCKVKlL3llHBAlIaUUpRoFU0sAWgWR0CTYCUbDMvAdX2UKGgGaAloD0MIJ92WyIVQcECUhpRSlGgVTVABaBZHQJNhWGZeAut1fZQoaAZoCWgPQwjdYKjDyl9xQJSGlFKUaBVNkwFoFkdAk2JiIHkcTHV9lChoBmgJaA9DCESF6uYiwHFAlIaUUpRoFU0zAmgWR0CTY4mNipeedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d46c324c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d46c32550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d46c325e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d46c32670>", "_build": "<function ActorCriticPolicy._build at 0x7f9d46c32700>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d46c32790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9d46c32820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d46c328b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d46c32940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d46c329d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d46c32a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d46c32af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d46c2e450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676679288373627424, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAYnPz67Xh4/Cj0nPpK+Kb/EVIE+w2+8vAAAAAAAAAAAmlSkPAx/uT8Y+fw+MmLFPsCLe7yVG/28AAAAAAAAAADAI5S9CdKaP03jYb4deim/UGYbvv4xCb4AAAAAAAAAAGZaCbxcoy+6PqwRvPoaRLIVCuC6a2sONAAAgD8AAIA/tfqGvhTRBj8a9zm9i4Ihv49o2L6czyU+AAAAAAAAAABm6kS8wxFXutLKMzUms7YwJzGRO9IbXbQAAIA/AACAP2ZeFb3BWK4/daVdvuD4qb6gUhq9nkIWvgAAAAAAAAAAzZP9PLgkoTydTBm+zWkbvv93XTtdUeK9AAAAAAAAAAAm9eS9gfwNP1YhDT31I0C/oBELvhlswz0AAAAAAAAAABqs872Wxgc/4AvhvBoNK78eY+69/+QQPQAAAAAAAAAADVq1vT/wcT8enNa9OYhqv1jUE768g5K9AAAAAAAAAABTakC+0ouYPx0z0r7sEyS/O/jvvoScOb4AAAAAAAAAADNZvTwUSF4+tZecOwU/5L5zzTI9UllgvQAAAAAAAAAALckLvrURFj8DV9C9a/pOv8b/Or6/XyQ9AAAAAAAAAAAmscC9n1OsPvmUHj6ZGhK/6rjKvIWMCz4AAAAAAAAAANp47r0Y2ys/wyaYvH7FYL+Poh6+djIYPQAAAAAAAAAAzabivI+acro7SPa5IaETufIwGDuVJR85AACAPwAAgD+90JQ+aehzPpZiSr7eOCm/szUMPwNgWb0AAAAAAAAAAGAMHb4cwBO8vQn4OnQg7TjF/Yg9wyklugAAgD8AAIA/cyoOPj1bTbtGKja/E4IgPRt1C759Jvw+AACAPwAAAAAahRg+hfaTu0nSvzoQkhS4ntnovKbz4bkAAIA/AACAP1OeWT5jiG8/gKkJP2bbQL9ryLY+dZ+aPgAAAAAAAAAAc2UBPhRakz+2FgY/MLlAvy06Wz7qD2A+AAAAAAAAAABNbJC91FJgPlmuHz4UxwK/2vviuwjf5j0AAAAAAAAAAGYuiD1jWEg/HRi6PSJGUL/Mh849UmWHPQAAAAAAAAAAWif8vddnZD7ZfcE9wGLWviRlg72WABk9AAAAAAAAAABm0r47XCtuuoN13rFdRNyw82hzOg1dCzMAAIA/AACAP83w7Ls+kBU/4VHBu293Z79Ltdi7jl+HPQAAAAAAAAAAerKJPqzbDz8LzGw9J+MnvxALrj6ZGi6+AAAAAAAAAAAAHHu8pPwEOnXScj3mmR2+92ioPEJtzb4AAAAAAACAP3Mc8z1NlpU/yYGjPjmNRb9Y0RI+X/6JPQAAAAAAAAAAoLoXvmkJLrw7gjq64pHLuJZ0kz3EBZ45AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITfbP0wCLcUCUhpRSlIwBbJRLkowBdJRHQKVoXlbu+h51fZQoaAZoCWgPQwjZtFIIJD1yQJSGlFKUaBVLkmgWR0ClaJrXtjTbdX2UKGgGaAloD0MIkUQvoxhycUCUhpRSlGgVS8BoFkdApWjsuez2OHV9lChoBmgJaA9DCJDZWfTOXnJAlIaUUpRoFUu2aBZHQKVpEVfNRm91fZQoaAZoCWgPQwhmLQWkvXNyQJSGlFKUaBVLtWgWR0ClaQ189fTkdX2UKGgGaAloD0MIjC0EOShGckCUhpRSlGgVS9toFkdApWmp1A7gbnV9lChoBmgJaA9DCE4NNJ9zMm9AlIaUUpRoFUuWaBZHQKVp8Lqlgtx1fZQoaAZoCWgPQwjNI38wcPhzQJSGlFKUaBVLo2gWR0ClaflM7EHddX2UKGgGaAloD0MITG9/LtpAdECUhpRSlGgVS8doFkdApWoYgieNDXV9lChoBmgJaA9DCNXQBmCDqHBAlIaUUpRoFUuhaBZHQKVqLDrJKap1fZQoaAZoCWgPQwhdxeI3hdxxQJSGlFKUaBVLwGgWR0Clat451eSkdX2UKGgGaAloD0MIsfm4NpR8ckCUhpRSlGgVS6VoFkdApWsSv/zasnV9lChoBmgJaA9DCNqoTgdyLHNAlIaUUpRoFUvaaBZHQKVrG/0NBnl1fZQoaAZoCWgPQwj0b5f9untyQJSGlFKUaBVL4mgWR0Cla063RXwLdX2UKGgGaAloD0MIxw2/my72ckCUhpRSlGgVS8doFkdApWu91wHZ9XV9lChoBmgJaA9DCNrKS/6n63FAlIaUUpRoFUvBaBZHQKVr9L0SRKZ1fZQoaAZoCWgPQwjL9iFvuUhyQJSGlFKUaBVLtmgWR0ClbDWVNYbLdX2UKGgGaAloD0MI0V0SZ0XpcECUhpRSlGgVS7JoFkdApWxLw8W9DnV9lChoBmgJaA9DCCL6tfUTTXFAlIaUUpRoFUvHaBZHQKVsYhL5AQh1fZQoaAZoCWgPQwj9EBssXNNxQJSGlFKUaBVLjmgWR0ClbGEv0yxidX2UKGgGaAloD0MI3h0Zq03ecUCUhpRSlGgVS9xoFkdApWyOgezUqnV9lChoBmgJaA9DCN2U8loJTXFAlIaUUpRoFUuMaBZHQKVstKvmozh1fZQoaAZoCWgPQwgVAOMZ9HBxQJSGlFKUaBVLvGgWR0ClbMw4sEq2dX2UKGgGaAloD0MI+WabG1NQcECUhpRSlGgVS8poFkdApW1amMwUQHV9lChoBmgJaA9DCMPzUrFxz3FAlIaUUpRoFU0lAWgWR0ClbbzpHI6sdX2UKGgGaAloD0MI4e1BCAjFcUCUhpRSlGgVS79oFkdApW3I8U21lXV9lChoBmgJaA9DCNklqreG23JAlIaUUpRoFUu6aBZHQKVuREdeY2N1fZQoaAZoCWgPQwhiu3uALvxxQJSGlFKUaBVLwmgWR0ClbtV/tpmFdX2UKGgGaAloD0MIDcfzGVAFcUCUhpRSlGgVS51oFkdApW/rkKeCkHV9lChoBmgJaA9DCCR7hJohjHJAlIaUUpRoFUvkaBZHQKVwAbWmP5p1fZQoaAZoCWgPQwiIga59wa1yQJSGlFKUaBVL3mgWR0ClcHbR4QjEdX2UKGgGaAloD0MI4gLQKN11ckCUhpRSlGgVS/NoFkdApXB1xZMcqHV9lChoBmgJaA9DCPWFkPM+SnJAlIaUUpRoFUvPaBZHQKVwooVmBe51fZQoaAZoCWgPQwg9npYfuGpyQJSGlFKUaBVL2WgWR0ClcNjiwSrYdX2UKGgGaAloD0MIhgK2g5H5cUCUhpRSlGgVS8JoFkdApXEagdwNsnV9lChoBmgJaA9DCNxmKsTjOXNAlIaUUpRoFUvnaBZHQKVxpyU9pyp1fZQoaAZoCWgPQwjx2To42DhzQJSGlFKUaBVLvWgWR0ClcbMir1dxdX2UKGgGaAloD0MI02cHXFf/cUCUhpRSlGgVS8poFkdApXH1lTWGy3V9lChoBmgJaA9DCFFPH4E/CnRAlIaUUpRoFUuraBZHQKVyCuoP07N1fZQoaAZoCWgPQwiADvPlRXdxQJSGlFKUaBVLyWgWR0ClchfY8Md+dX2UKGgGaAloD0MIGF5J8hx/cUCUhpRSlGgVS65oFkdApXIhUm2LHnV9lChoBmgJaA9DCAk4hCo1x3FAlIaUUpRoFUudaBZHQKVyxmozeoF1fZQoaAZoCWgPQwhq2Vpf5EBzQJSGlFKUaBVLxWgWR0ClctsR6F/QdX2UKGgGaAloD0MIhnE3iJYtckCUhpRSlGgVS75oFkdApXMDER8MNXV9lChoBmgJaA9DCP/pBgo8qHBAlIaUUpRoFUuoaBZHQKVzDfZ26kJ1fZQoaAZoCWgPQwiLUkKwqm1xQJSGlFKUaBVLs2gWR0Clczd0q6OHdX2UKGgGaAloD0MICw3EshmZcUCUhpRSlGgVS6RoFkdApXNnl0YCQ3V9lChoBmgJaA9DCKxxNh1BN3BAlIaUUpRoFUucaBZHQKV0L6rvLHN1fZQoaAZoCWgPQwhENSVZh0ZxQJSGlFKUaBVLsGgWR0CldR9v863idX2UKGgGaAloD0MI+UogJbY0cUCUhpRSlGgVS55oFkdApXWS0IC2dHV9lChoBmgJaA9DCFGFP8ObyHFAlIaUUpRoFUuSaBZHQKV2LQzk6tF1fZQoaAZoCWgPQwiJXdvbbRdzQJSGlFKUaBVL9WgWR0CldmfsmfGudX2UKGgGaAloD0MIelBQipbyckCUhpRSlGgVS/NoFkdApXZoBzV+Z3V9lChoBmgJaA9DCLNCke4nZXJAlIaUUpRoFUuVaBZHQKV2ow2VE/l1fZQoaAZoCWgPQwg+PEuQkfhxQJSGlFKUaBVLlGgWR0CldrQtBfKIdX2UKGgGaAloD0MIl43O+ekyckCUhpRSlGgVS/RoFkdApXbAH9m6G3V9lChoBmgJaA9DCGjO+pSj1XNAlIaUUpRoFUvXaBZHQKV3BcnE2pB1fZQoaAZoCWgPQwgdsKvJ0/llQJSGlFKUaBVN6ANoFkdApXcd6Rhc7nV9lChoBmgJaA9DCO0NvjAZfmZAlIaUUpRoFU3oA2gWR0Cld0tqQA+7dX2UKGgGaAloD0MIj26ERQV0cUCUhpRSlGgVS7poFkdApXddsP8Q7XV9lChoBmgJaA9DCEPlX8trdnJAlIaUUpRoFU0rAWgWR0Cld3/VZs9CdX2UKGgGaAloD0MIgNJQo5Bgb0CUhpRSlGgVS5FoFkdApXeS5Gz8g3V9lChoBmgJaA9DCPopjgOvk3FAlIaUUpRoFUu3aBZHQKV3wjSofjl1fZQoaAZoCWgPQwi2LcpskARwQJSGlFKUaBVLo2gWR0Cld+2g3974dX2UKGgGaAloD0MIDAQBMjSZcECUhpRSlGgVS7NoFkdApXgsAxSHd3V9lChoBmgJaA9DCP/mxYlv1HBAlIaUUpRoFUuSaBZHQKV4LopQUHp1fZQoaAZoCWgPQwg7/gsEAQRwQJSGlFKUaBVLmmgWR0CleDtZV4ordX2UKGgGaAloD0MI0T5W8BvgcUCUhpRSlGgVS7VoFkdApXhA5PuXu3V9lChoBmgJaA9DCEqbqntk/nFAlIaUUpRoFUuWaBZHQKV4QYLLIPt1fZQoaAZoCWgPQwgDB7R0BY5wQJSGlFKUaBVLsGgWR0CleE6eXiR5dX2UKGgGaAloD0MIVoDvNq+YcUCUhpRSlGgVS7FoFkdApXhf2VVxTHV9lChoBmgJaA9DCNE+VvCbYHFAlIaUUpRoFUuiaBZHQKV4qzF+/g11fZQoaAZoCWgPQwjQuHAgJDtyQJSGlFKUaBVLumgWR0CleQnmA9V4dX2UKGgGaAloD0MI7PfEOpX4cECUhpRSlGgVS7RoFkdApXk//DLr5nV9lChoBmgJaA9DCHoYWp3cFHJAlIaUUpRoFU0AAWgWR0CleWFXA/LUdX2UKGgGaAloD0MILnQlAlUsc0CUhpRSlGgVTWUBaBZHQKV6EMtsen11fZQoaAZoCWgPQwjWOnE5XtZxQJSGlFKUaBVL0mgWR0ClepOiWVu8dX2UKGgGaAloD0MI8zgM5u8acUCUhpRSlGgVS69oFkdApXrYsEq2B3V9lChoBmgJaA9DCFmIDoFjHnFAlIaUUpRoFUuWaBZHQKV68p1ie/Z1fZQoaAZoCWgPQwjRQCybOaBzQJSGlFKUaBVLwGgWR0ClevCxmkFfdX2UKGgGaAloD0MI/WmjOt0/cECUhpRSlGgVS7JoFkdApXsg8QqZt3V9lChoBmgJaA9DCI8X0uGh6XJAlIaUUpRoFUvTaBZHQKV7M8EFGG51fZQoaAZoCWgPQwhqZ5jaUlZxQJSGlFKUaBVLq2gWR0Clezew1R+CdX2UKGgGaAloD0MIONcwQ2PvcECUhpRSlGgVS59oFkdApXuFivxH5XV9lChoBmgJaA9DCD0K16MwkXFAlIaUUpRoFUuraBZHQKV7luMMqjJ1fZQoaAZoCWgPQwgQI4RH2z5xQJSGlFKUaBVLmWgWR0Cle5VlGwzMdX2UKGgGaAloD0MINPeQ8P0ZdECUhpRSlGgVS8NoFkdApXvCo60Y0nV9lChoBmgJaA9DCP0tAfinanBAlIaUUpRoFUumaBZHQKV703G4qgB1fZQoaAZoCWgPQwg83uS3KMFwQJSGlFKUaBVLr2gWR0Cle9rlFMIvdX2UKGgGaAloD0MIIhlybD0fPkCUhpRSlGgVS2NoFkdApXvmTeO4onV9lChoBmgJaA9DCPGEXn8SenBAlIaUUpRoFUuYaBZHQKV75vIfbK11fZQoaAZoCWgPQwhk5ZfBmB1vQJSGlFKUaBVLkWgWR0ClfAh8IAwPdX2UKGgGaAloD0MISGx3D1C1cUCUhpRSlGgVS6loFkdApXwqXnhbW3V9lChoBmgJaA9DCCmTGtrAWnNAlIaUUpRoFUvhaBZHQKV8SzKs+3Z1fZQoaAZoCWgPQwha8+MvLd1yQJSGlFKUaBVLnGgWR0ClfE127nPndX2UKGgGaAloD0MIq1s9J71WckCUhpRSlGgVS9toFkdApXxwTufEoHV9lChoBmgJaA9DCLX8wFWeY3BAlIaUUpRoFUufaBZHQKV8a3solUp1fZQoaAZoCWgPQwhAho4dlMByQJSGlFKUaBVLrWgWR0ClfJ2QOnVHdX2UKGgGaAloD0MI9FKxMa/1cUCUhpRSlGgVS7ZoFkdApXzRZU1hs3V9lChoBmgJaA9DCJ4I4jwc+XBAlIaUUpRoFUu5aBZHQKV9FDP4VRF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 558, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.97, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 9, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c14d3a5d24b4890342530c8028c9af3e8e132adcac8dcd000402aa3d901709df
|
3 |
+
size 147488
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -42,13 +42,13 @@
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
-
"n_envs":
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,11 +57,11 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
@@ -70,21 +70,21 @@
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d46c324c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d46c32550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d46c325e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d46c32670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9d46c32700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9d46c32790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9d46c32820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d46c328b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9d46c32940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d46c329d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d46c32a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d46c32af0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f9d46c2e450>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
+
"n_envs": 32,
|
46 |
+
"num_timesteps": 2031616,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1676679288373627424,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAYnPz67Xh4/Cj0nPpK+Kb/EVIE+w2+8vAAAAAAAAAAAmlSkPAx/uT8Y+fw+MmLFPsCLe7yVG/28AAAAAAAAAADAI5S9CdKaP03jYb4deim/UGYbvv4xCb4AAAAAAAAAAGZaCbxcoy+6PqwRvPoaRLIVCuC6a2sONAAAgD8AAIA/tfqGvhTRBj8a9zm9i4Ihv49o2L6czyU+AAAAAAAAAABm6kS8wxFXutLKMzUms7YwJzGRO9IbXbQAAIA/AACAP2ZeFb3BWK4/daVdvuD4qb6gUhq9nkIWvgAAAAAAAAAAzZP9PLgkoTydTBm+zWkbvv93XTtdUeK9AAAAAAAAAAAm9eS9gfwNP1YhDT31I0C/oBELvhlswz0AAAAAAAAAABqs872Wxgc/4AvhvBoNK78eY+69/+QQPQAAAAAAAAAADVq1vT/wcT8enNa9OYhqv1jUE768g5K9AAAAAAAAAABTakC+0ouYPx0z0r7sEyS/O/jvvoScOb4AAAAAAAAAADNZvTwUSF4+tZecOwU/5L5zzTI9UllgvQAAAAAAAAAALckLvrURFj8DV9C9a/pOv8b/Or6/XyQ9AAAAAAAAAAAmscC9n1OsPvmUHj6ZGhK/6rjKvIWMCz4AAAAAAAAAANp47r0Y2ys/wyaYvH7FYL+Poh6+djIYPQAAAAAAAAAAzabivI+acro7SPa5IaETufIwGDuVJR85AACAPwAAgD+90JQ+aehzPpZiSr7eOCm/szUMPwNgWb0AAAAAAAAAAGAMHb4cwBO8vQn4OnQg7TjF/Yg9wyklugAAgD8AAIA/cyoOPj1bTbtGKja/E4IgPRt1C759Jvw+AACAPwAAAAAahRg+hfaTu0nSvzoQkhS4ntnovKbz4bkAAIA/AACAP1OeWT5jiG8/gKkJP2bbQL9ryLY+dZ+aPgAAAAAAAAAAc2UBPhRakz+2FgY/MLlAvy06Wz7qD2A+AAAAAAAAAABNbJC91FJgPlmuHz4UxwK/2vviuwjf5j0AAAAAAAAAAGYuiD1jWEg/HRi6PSJGUL/Mh849UmWHPQAAAAAAAAAAWif8vddnZD7ZfcE9wGLWviRlg72WABk9AAAAAAAAAABm0r47XCtuuoN13rFdRNyw82hzOg1dCzMAAIA/AACAP83w7Ls+kBU/4VHBu293Z79Ltdi7jl+HPQAAAAAAAAAAerKJPqzbDz8LzGw9J+MnvxALrj6ZGi6+AAAAAAAAAAAAHHu8pPwEOnXScj3mmR2+92ioPEJtzb4AAAAAAACAP3Mc8z1NlpU/yYGjPjmNRb9Y0RI+X/6JPQAAAAAAAAAAoLoXvmkJLrw7gjq64pHLuJZ0kz3EBZ45AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITfbP0wCLcUCUhpRSlIwBbJRLkowBdJRHQKVoXlbu+h51fZQoaAZoCWgPQwjZtFIIJD1yQJSGlFKUaBVLkmgWR0ClaJrXtjTbdX2UKGgGaAloD0MIkUQvoxhycUCUhpRSlGgVS8BoFkdApWjsuez2OHV9lChoBmgJaA9DCJDZWfTOXnJAlIaUUpRoFUu2aBZHQKVpEVfNRm91fZQoaAZoCWgPQwhmLQWkvXNyQJSGlFKUaBVLtWgWR0ClaQ189fTkdX2UKGgGaAloD0MIjC0EOShGckCUhpRSlGgVS9toFkdApWmp1A7gbnV9lChoBmgJaA9DCE4NNJ9zMm9AlIaUUpRoFUuWaBZHQKVp8Lqlgtx1fZQoaAZoCWgPQwjNI38wcPhzQJSGlFKUaBVLo2gWR0ClaflM7EHddX2UKGgGaAloD0MITG9/LtpAdECUhpRSlGgVS8doFkdApWoYgieNDXV9lChoBmgJaA9DCNXQBmCDqHBAlIaUUpRoFUuhaBZHQKVqLDrJKap1fZQoaAZoCWgPQwhdxeI3hdxxQJSGlFKUaBVLwGgWR0Clat451eSkdX2UKGgGaAloD0MIsfm4NpR8ckCUhpRSlGgVS6VoFkdApWsSv/zasnV9lChoBmgJaA9DCNqoTgdyLHNAlIaUUpRoFUvaaBZHQKVrG/0NBnl1fZQoaAZoCWgPQwj0b5f9untyQJSGlFKUaBVL4mgWR0Cla063RXwLdX2UKGgGaAloD0MIxw2/my72ckCUhpRSlGgVS8doFkdApWu91wHZ9XV9lChoBmgJaA9DCNrKS/6n63FAlIaUUpRoFUvBaBZHQKVr9L0SRKZ1fZQoaAZoCWgPQwjL9iFvuUhyQJSGlFKUaBVLtmgWR0ClbDWVNYbLdX2UKGgGaAloD0MI0V0SZ0XpcECUhpRSlGgVS7JoFkdApWxLw8W9DnV9lChoBmgJaA9DCCL6tfUTTXFAlIaUUpRoFUvHaBZHQKVsYhL5AQh1fZQoaAZoCWgPQwj9EBssXNNxQJSGlFKUaBVLjmgWR0ClbGEv0yxidX2UKGgGaAloD0MI3h0Zq03ecUCUhpRSlGgVS9xoFkdApWyOgezUqnV9lChoBmgJaA9DCN2U8loJTXFAlIaUUpRoFUuMaBZHQKVstKvmozh1fZQoaAZoCWgPQwgVAOMZ9HBxQJSGlFKUaBVLvGgWR0ClbMw4sEq2dX2UKGgGaAloD0MI+WabG1NQcECUhpRSlGgVS8poFkdApW1amMwUQHV9lChoBmgJaA9DCMPzUrFxz3FAlIaUUpRoFU0lAWgWR0ClbbzpHI6sdX2UKGgGaAloD0MI4e1BCAjFcUCUhpRSlGgVS79oFkdApW3I8U21lXV9lChoBmgJaA9DCNklqreG23JAlIaUUpRoFUu6aBZHQKVuREdeY2N1fZQoaAZoCWgPQwhiu3uALvxxQJSGlFKUaBVLwmgWR0ClbtV/tpmFdX2UKGgGaAloD0MIDcfzGVAFcUCUhpRSlGgVS51oFkdApW/rkKeCkHV9lChoBmgJaA9DCCR7hJohjHJAlIaUUpRoFUvkaBZHQKVwAbWmP5p1fZQoaAZoCWgPQwiIga59wa1yQJSGlFKUaBVL3mgWR0ClcHbR4QjEdX2UKGgGaAloD0MI4gLQKN11ckCUhpRSlGgVS/NoFkdApXB1xZMcqHV9lChoBmgJaA9DCPWFkPM+SnJAlIaUUpRoFUvPaBZHQKVwooVmBe51fZQoaAZoCWgPQwg9npYfuGpyQJSGlFKUaBVL2WgWR0ClcNjiwSrYdX2UKGgGaAloD0MIhgK2g5H5cUCUhpRSlGgVS8JoFkdApXEagdwNsnV9lChoBmgJaA9DCNxmKsTjOXNAlIaUUpRoFUvnaBZHQKVxpyU9pyp1fZQoaAZoCWgPQwjx2To42DhzQJSGlFKUaBVLvWgWR0ClcbMir1dxdX2UKGgGaAloD0MI02cHXFf/cUCUhpRSlGgVS8poFkdApXH1lTWGy3V9lChoBmgJaA9DCFFPH4E/CnRAlIaUUpRoFUuraBZHQKVyCuoP07N1fZQoaAZoCWgPQwiADvPlRXdxQJSGlFKUaBVLyWgWR0ClchfY8Md+dX2UKGgGaAloD0MIGF5J8hx/cUCUhpRSlGgVS65oFkdApXIhUm2LHnV9lChoBmgJaA9DCAk4hCo1x3FAlIaUUpRoFUudaBZHQKVyxmozeoF1fZQoaAZoCWgPQwhq2Vpf5EBzQJSGlFKUaBVLxWgWR0ClctsR6F/QdX2UKGgGaAloD0MIhnE3iJYtckCUhpRSlGgVS75oFkdApXMDER8MNXV9lChoBmgJaA9DCP/pBgo8qHBAlIaUUpRoFUuoaBZHQKVzDfZ26kJ1fZQoaAZoCWgPQwiLUkKwqm1xQJSGlFKUaBVLs2gWR0Clczd0q6OHdX2UKGgGaAloD0MICw3EshmZcUCUhpRSlGgVS6RoFkdApXNnl0YCQ3V9lChoBmgJaA9DCKxxNh1BN3BAlIaUUpRoFUucaBZHQKV0L6rvLHN1fZQoaAZoCWgPQwhENSVZh0ZxQJSGlFKUaBVLsGgWR0CldR9v863idX2UKGgGaAloD0MI+UogJbY0cUCUhpRSlGgVS55oFkdApXWS0IC2dHV9lChoBmgJaA9DCFGFP8ObyHFAlIaUUpRoFUuSaBZHQKV2LQzk6tF1fZQoaAZoCWgPQwiJXdvbbRdzQJSGlFKUaBVL9WgWR0CldmfsmfGudX2UKGgGaAloD0MIelBQipbyckCUhpRSlGgVS/NoFkdApXZoBzV+Z3V9lChoBmgJaA9DCLNCke4nZXJAlIaUUpRoFUuVaBZHQKV2ow2VE/l1fZQoaAZoCWgPQwg+PEuQkfhxQJSGlFKUaBVLlGgWR0CldrQtBfKIdX2UKGgGaAloD0MIl43O+ekyckCUhpRSlGgVS/RoFkdApXbAH9m6G3V9lChoBmgJaA9DCGjO+pSj1XNAlIaUUpRoFUvXaBZHQKV3BcnE2pB1fZQoaAZoCWgPQwgdsKvJ0/llQJSGlFKUaBVN6ANoFkdApXcd6Rhc7nV9lChoBmgJaA9DCO0NvjAZfmZAlIaUUpRoFU3oA2gWR0Cld0tqQA+7dX2UKGgGaAloD0MIj26ERQV0cUCUhpRSlGgVS7poFkdApXddsP8Q7XV9lChoBmgJaA9DCEPlX8trdnJAlIaUUpRoFU0rAWgWR0Cld3/VZs9CdX2UKGgGaAloD0MIgNJQo5Bgb0CUhpRSlGgVS5FoFkdApXeS5Gz8g3V9lChoBmgJaA9DCPopjgOvk3FAlIaUUpRoFUu3aBZHQKV3wjSofjl1fZQoaAZoCWgPQwi2LcpskARwQJSGlFKUaBVLo2gWR0Cld+2g3974dX2UKGgGaAloD0MIDAQBMjSZcECUhpRSlGgVS7NoFkdApXgsAxSHd3V9lChoBmgJaA9DCP/mxYlv1HBAlIaUUpRoFUuSaBZHQKV4LopQUHp1fZQoaAZoCWgPQwg7/gsEAQRwQJSGlFKUaBVLmmgWR0CleDtZV4ordX2UKGgGaAloD0MI0T5W8BvgcUCUhpRSlGgVS7VoFkdApXhA5PuXu3V9lChoBmgJaA9DCEqbqntk/nFAlIaUUpRoFUuWaBZHQKV4QYLLIPt1fZQoaAZoCWgPQwgDB7R0BY5wQJSGlFKUaBVLsGgWR0CleE6eXiR5dX2UKGgGaAloD0MIVoDvNq+YcUCUhpRSlGgVS7FoFkdApXhf2VVxTHV9lChoBmgJaA9DCNE+VvCbYHFAlIaUUpRoFUuiaBZHQKV4qzF+/g11fZQoaAZoCWgPQwjQuHAgJDtyQJSGlFKUaBVLumgWR0CleQnmA9V4dX2UKGgGaAloD0MI7PfEOpX4cECUhpRSlGgVS7RoFkdApXk//DLr5nV9lChoBmgJaA9DCHoYWp3cFHJAlIaUUpRoFU0AAWgWR0CleWFXA/LUdX2UKGgGaAloD0MILnQlAlUsc0CUhpRSlGgVTWUBaBZHQKV6EMtsen11fZQoaAZoCWgPQwjWOnE5XtZxQJSGlFKUaBVL0mgWR0ClepOiWVu8dX2UKGgGaAloD0MI8zgM5u8acUCUhpRSlGgVS69oFkdApXrYsEq2B3V9lChoBmgJaA9DCFmIDoFjHnFAlIaUUpRoFUuWaBZHQKV68p1ie/Z1fZQoaAZoCWgPQwjRQCybOaBzQJSGlFKUaBVLwGgWR0ClevCxmkFfdX2UKGgGaAloD0MI/WmjOt0/cECUhpRSlGgVS7JoFkdApXsg8QqZt3V9lChoBmgJaA9DCI8X0uGh6XJAlIaUUpRoFUvTaBZHQKV7M8EFGG51fZQoaAZoCWgPQwhqZ5jaUlZxQJSGlFKUaBVLq2gWR0Clezew1R+CdX2UKGgGaAloD0MIONcwQ2PvcECUhpRSlGgVS59oFkdApXuFivxH5XV9lChoBmgJaA9DCD0K16MwkXFAlIaUUpRoFUuraBZHQKV7luMMqjJ1fZQoaAZoCWgPQwgQI4RH2z5xQJSGlFKUaBVLmWgWR0Cle5VlGwzMdX2UKGgGaAloD0MINPeQ8P0ZdECUhpRSlGgVS8NoFkdApXvCo60Y0nV9lChoBmgJaA9DCP0tAfinanBAlIaUUpRoFUumaBZHQKV703G4qgB1fZQoaAZoCWgPQwg83uS3KMFwQJSGlFKUaBVLr2gWR0Cle9rlFMIvdX2UKGgGaAloD0MIIhlybD0fPkCUhpRSlGgVS2NoFkdApXvmTeO4onV9lChoBmgJaA9DCPGEXn8SenBAlIaUUpRoFUuYaBZHQKV75vIfbK11fZQoaAZoCWgPQwhk5ZfBmB1vQJSGlFKUaBVLkWgWR0ClfAh8IAwPdX2UKGgGaAloD0MISGx3D1C1cUCUhpRSlGgVS6loFkdApXwqXnhbW3V9lChoBmgJaA9DCCmTGtrAWnNAlIaUUpRoFUvhaBZHQKV8SzKs+3Z1fZQoaAZoCWgPQwha8+MvLd1yQJSGlFKUaBVLnGgWR0ClfE127nPndX2UKGgGaAloD0MIq1s9J71WckCUhpRSlGgVS9toFkdApXxwTufEoHV9lChoBmgJaA9DCLX8wFWeY3BAlIaUUpRoFUufaBZHQKV8a3solUp1fZQoaAZoCWgPQwhAho4dlMByQJSGlFKUaBVLrWgWR0ClfJ2QOnVHdX2UKGgGaAloD0MI9FKxMa/1cUCUhpRSlGgVS7ZoFkdApXzRZU1hs3V9lChoBmgJaA9DCJ4I4jwc+XBAlIaUUpRoFUu5aBZHQKV9FDP4VRF1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 558,
|
80 |
"n_steps": 1024,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.97,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 9,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82a992dcf3e8d5264e305cd0daf2bd2f44086928317113355d4e7d19e5804589
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dc1c3b154b8725e915bfe8e4f9f50fb9a06d3f27794a4d423534b85308e3192
|
3 |
+
size 43265
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 277.1219128223552, "std_reward": 10.251858862541695, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T01:03:12.148218"}
|