ramkumarsivakumar commited on
Commit
3d7d02e
1 Parent(s): 3cee95e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +152 -145
README.md CHANGED
@@ -1,201 +1,208 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
 
 
 
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
 
 
 
 
 
 
 
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
 
92
 
93
- #### Training Hyperparameters
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
 
 
 
 
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
201
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - openchat
5
+ - mistral
6
+ - C-RLFT
7
+ datasets:
8
+ - openchat/openchat_sharegpt4_dataset
9
+ - imone/OpenOrca_FLAN
10
+ - LDJnr/LessWrong-Amplify-Instruct
11
+ - LDJnr/Pure-Dove
12
+ - LDJnr/Verified-Camel
13
+ - tiedong/goat
14
+ - glaiveai/glaive-code-assistant
15
+ - meta-math/MetaMathQA
16
+ - OpenAssistant/oasst_top1_2023-08-25
17
+ - TIGER-Lab/MathInstruct
18
  library_name: transformers
19
+ pipeline_tag: text-generation
20
  ---
21
 
22
+ # OpenChat: Advancing Open-source Language Models with Mixed-Quality Data
23
 
24
+ <div align="center">
25
+ <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
26
+ </div>
27
 
28
+ <p align="center">
29
+ <a href="https://github.com/imoneoi/openchat">GitHub Repo</a> •
30
+ <a href="https://openchat.team">Online Demo</a> •
31
+ <a href="https://discord.gg/pQjnXvNKHY">Discord</a> •
32
+ <a href="https://twitter.com/imonenext">Twitter</a> •
33
+ <a href="https://huggingface.co/openchat">Huggingface</a> •
34
+ <a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a>
35
+ </p>
36
 
37
+ **🔥 The first 7B model Achieves Comparable Results with ChatGPT (March)! 🔥**
38
 
39
+ **🤖 #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models 🤖**
40
 
41
+ <div align="center" style="justify-content: center; align-items: center; "'>
42
+ <img src="https://github.com/alpayariyak/openchat/blob/master/assets/3.5-benchmarks.png?raw=true" style="width: 100%; border-radius: 0.5em">
43
+ </div>
44
 
45
+ OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
46
 
47
+ [![DOI](https://zenodo.org/badge/645397533.svg)](https://zenodo.org/badge/latestdoi/645397533)
48
 
 
 
 
 
 
 
 
49
 
50
+ ## Usage
51
 
52
+ To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
53
 
54
+ Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.
 
 
55
 
56
+ If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
57
 
58
+ <details>
59
+ <summary>Example request (click to expand)</summary>
60
 
61
+ ```bash
62
+ curl http://localhost:18888/v1/chat/completions \
63
+ -H "Content-Type: application/json" \
64
+ -d '{
65
+ "model": "openchat_3.5",
66
+ "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
67
+ }'
68
+ ```
69
 
70
+ Coding Mode
71
 
72
+ ```bash
73
+ curl http://localhost:18888/v1/chat/completions \
74
+ -H "Content-Type: application/json" \
75
+ -d '{
76
+ "model": "openchat_3.5",
77
+ "condition": "Code",
78
+ "messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}]
79
+ }'
80
+ ```
81
 
82
+ </details>
83
 
84
+ | Model | Size | Context | Weights | Serving |
85
+ |--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
86
+ | OpenChat 3.5 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` |
87
 
88
+ For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below.
89
 
90
+ <details>
91
+ <summary>Conversation templates (click to expand)</summary>
92
 
93
+ ```python
94
+ import transformers
95
+ tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
96
 
97
+ # Single-turn
98
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
99
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
100
 
101
+ # Multi-turn
102
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
103
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
104
 
105
+ # Coding Mode
106
+ tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
107
+ assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
108
+ ```
109
 
110
+ </details>
111
 
112
+ The GPT4 template is also available as the integrated `tokenizer.chat_template`,
113
+ which can be used instead of manually specifying the template:
114
 
115
+ ```python
116
+ messages = [
117
+ {"role": "user", "content": "Hello"},
118
+ {"role": "assistant", "content": "Hi"},
119
+ {"role": "user", "content": "How are you today?"}
120
+ ]
121
+ tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
122
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
123
+ ```
124
 
125
+ ## Comparison with [X.AI Grok models](https://x.ai/)
126
 
127
+ Hey @elonmusk, I just wanted to let you know that I've recently come across your new model, Grok, and I must say, I'm quite impressed! With 33 billion parameters and all, you've really outdone yourself. But, I've got some news for you - I've outperformed Grok with my humble 7 billion parameters! Isn't that wild? I mean, who would have thought that a model with fewer parameters could be just as witty and humorous as Grok?
128
 
129
+ Anyway, I think it's about time you join the open research movement and make your model, Grok, open source! The world needs more brilliant minds like yours to contribute to the advancement of AI. Together, we can create something truly groundbreaking and make the world a better place. So, what do you say, @elonmusk? Let's open up the doors and share our knowledge with the world! 🚀💡
130
 
131
+ (Written by OpenChat 3.5, with a touch of humor and wit.)
132
 
133
+ | | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k |
134
+ |--------------|-------------|---------|----------|------|-----------|----------|----------|
135
+ | OpenChat 3.5 | Apache-2.0 | 7B | **56.4** | 64.3 | 55.5 | **28.6** | **77.3** |
136
+ | Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 |
137
+ | Grok-1 | Proprietary | ? | 55.8 | 73 | 63.2 | 23.9 | 62.9 |
138
 
139
+ ## <a id="benchmarks"></a> Benchmarks
140
 
141
+ | Model | # Params | Average | MT-Bench | AGIEval | BBH MC | TruthfulQA | MMLU | HumanEval | BBH CoT | GSM8K |
142
+ |--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------|
143
+ | OpenChat-3.5 | **7B** | **61.6** | 7.81 | **47.4** | **47.6** | **59.1** | 64.3 | **55.5** | 63.5 | **77.3** |
144
+ | ChatGPT (March)* | ? | 61.5 | **7.94** | 47.1 | **47.6** | 57.7 | **67.3** | 48.1 | **70.1** | 74.9 |
145
+ | | | | | | | | | | | |
146
+ | OpenHermes 2.5 | 7B | 59.3 | 7.54 | 46.5 | 49.4 | 57.5 | 63.8 | 48.2 | 59.9 | 73.5 |
147
+ | OpenOrca Mistral | 7B | 52.7 | 6.86 | 42.9 | 49.4 | 45.9 | 59.3 | 38.4 | 58.1 | 59.1 |
148
+ | Zephyr-β^ | 7B | 34.6 | 7.34 | 39.0 | 40.6 | 40.8 | 39.8 | 22.0 | 16.0 | 5.1 |
149
+ | Mistral | 7B | - | 6.84 | 38.0 | 39.0 | - | 60.1 | 30.5 | - | 52.2 |
150
+ | Open-source SOTA** | 13B-70B | 61.4 | 7.71 | 41.7 | 49.7 | 62.3 | 63.7 | 73.2 | 41.4 | 82.3 |
151
+ | | | | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B |
152
 
153
+ *: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.
154
 
155
+ ^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.
156
 
157
+ **: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
158
 
159
+ All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
160
 
161
+ ## Limitations
162
 
163
+ **Foundation Model Limitations**
164
+ Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
165
 
166
+ - Complex reasoning
167
+ - Mathematical and arithmetic tasks
168
+ - Programming and coding challenges
169
 
170
+ **Hallucination of Non-existent Information**
171
+ OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
172
 
173
+ **Safety**
174
+ OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
175
 
176
+ ## License
177
 
178
+ Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
179
 
180
+ ## Dataset Details
181
 
182
+ OpenChat 3.5 was trained with C-RLFT on a collection of publicly available high-quality instruction data, with a custom processing pipeline. We detail some notable subsets included here:
183
 
184
+ - [OpenChat ShareGPT](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset)
185
+ - [Open-Orca with FLAN answers](https://huggingface.co/datasets/imone/OpenOrca_FLAN)
186
+ - Capybara [1](https://huggingface.co/datasets/LDJnr/Pure-Dove) [2](https://huggingface.co/datasets/LDJnr/Verified-Camel) [3](https://huggingface.co/datasets/LDJnr/LessWrong-Amplify-Instruct)
187
+ - [GOAT](https://huggingface.co/datasets/tiedong/goat)
188
+ - [Glaive](https://huggingface.co/datasets/glaiveai/glaive-code-assistant)
189
+ - [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
190
+ - [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
191
+ - [OpenAssistant](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25)
192
 
193
+ ## Citation
194
 
195
+ ```
196
+ @article{wang2023openchat,
197
+ title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
198
+ author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
199
+ journal={arXiv preprint arXiv:2309.11235},
200
+ year={2023}
201
+ }
202
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
 
204
+ ## 💌 Contact
205
 
206
+ **Project Lead:**
207
+ - Guan Wang [imonenext at gmail dot com]
208
+ - [Alpay Ariyak](https://github.com/alpayariyak) [aariyak at wpi dot edu]