--- license: apache-2.0 tags: - generated_from_trainer datasets: - nerd metrics: - precision - recall - f1 - accuracy model_index: - name: ner_nerd results: - task: name: Token Classification type: token-classification dataset: name: nerd type: nerd args: nerd metric: name: Accuracy type: accuracy value: 0.9389165843185125 --- # ner_nerd This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.2553 - Precision: 0.7495 - Recall: 0.7859 - F1: 0.7672 - Accuracy: 0.9389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2805 | 1.0 | 8235 | 0.1950 | 0.7355 | 0.7835 | 0.7587 | 0.9376 | | 0.165 | 2.0 | 16470 | 0.1919 | 0.7528 | 0.7826 | 0.7674 | 0.9400 | | 0.1214 | 3.0 | 24705 | 0.2124 | 0.7522 | 0.7859 | 0.7687 | 0.9395 | | 0.0879 | 4.0 | 32940 | 0.2259 | 0.7483 | 0.7879 | 0.7675 | 0.9391 | | 0.0652 | 5.0 | 41175 | 0.2550 | 0.7522 | 0.7874 | 0.7694 | 0.9390 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.2