--- license: apache-2.0 tags: - generated_from_trainer datasets: - nerd metrics: - precision - recall - f1 - accuracy model_index: - name: ner_nerd results: - task: name: Token Classification type: token-classification dataset: name: nerd type: nerd args: nerd metric: name: Accuracy type: accuracy value: 0.9391592461061087 --- # ner_nerd This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.2245 - Precision: 0.7466 - Recall: 0.7873 - F1: 0.7664 - Accuracy: 0.9392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2843 | 1.0 | 8235 | 0.1951 | 0.7352 | 0.7824 | 0.7580 | 0.9375 | | 0.1655 | 2.0 | 16470 | 0.1928 | 0.7519 | 0.7827 | 0.7670 | 0.9398 | | 0.1216 | 3.0 | 24705 | 0.2119 | 0.75 | 0.7876 | 0.7684 | 0.9396 | | 0.0881 | 4.0 | 32940 | 0.2258 | 0.7515 | 0.7896 | 0.7701 | 0.9392 | | 0.0652 | 5.0 | 41175 | 0.2564 | 0.7518 | 0.7875 | 0.7692 | 0.9387 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.2