File size: 2,131 Bytes
6d07f84 3b87411 6d07f84 3b87411 d7a87fb 3b87411 6d07f84 1677520 6d07f84 3b87411 6d07f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- nerd
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: ner_nerd_fine
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: nerd
type: nerd
args: nerd
metric:
name: Accuracy
type: accuracy
value: 0.9050232835369201
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner_nerd_fine
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the nerd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3373
- Precision: 0.6326
- Recall: 0.6734
- F1: 0.6524
- Accuracy: 0.9050
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.6219 | 1.0 | 8235 | 0.3347 | 0.6066 | 0.6581 | 0.6313 | 0.9015 |
| 0.3071 | 2.0 | 16470 | 0.3165 | 0.6349 | 0.6637 | 0.6490 | 0.9060 |
| 0.2384 | 3.0 | 24705 | 0.3311 | 0.6373 | 0.6769 | 0.6565 | 0.9068 |
| 0.1834 | 4.0 | 32940 | 0.3414 | 0.6349 | 0.6780 | 0.6557 | 0.9069 |
| 0.1392 | 5.0 | 41175 | 0.3793 | 0.6334 | 0.6775 | 0.6547 | 0.9068 |
### Framework versions
- Transformers 4.9.1
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.2
|