Update README.md
Browse files
README.md
CHANGED
@@ -21,3 +21,48 @@ It achieves the following results on the evaluation set:
|
|
21 |
- `Perplexity: 35.52`
|
22 |
|
23 |
Even though this model only has `9.7 Million` parameters, its performance is only slightly behind the 28x larger `279 Million` parameter [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) model on the same Amharic evaluation set.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
- `Perplexity: 35.52`
|
22 |
|
23 |
Even though this model only has `9.7 Million` parameters, its performance is only slightly behind the 28x larger `279 Million` parameter [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) model on the same Amharic evaluation set.
|
24 |
+
|
25 |
+
# How to use
|
26 |
+
You can use this model directly with a pipeline for masked language modeling:
|
27 |
+
|
28 |
+
```python
|
29 |
+
>>> from transformers import pipeline
|
30 |
+
>>> unmasker = pipeline('fill-mask', model='rasyosef/bert-mini-amharic')
|
31 |
+
>>> unmasker("ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።")
|
32 |
+
|
33 |
+
[{'score': 0.4713546335697174,
|
34 |
+
'token': 9308,
|
35 |
+
'token_str': 'ዓመት',
|
36 |
+
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመት ተቆጥሯል ።'},
|
37 |
+
{'score': 0.25726795196533203,
|
38 |
+
'token': 9540,
|
39 |
+
'token_str': 'ዓመታት',
|
40 |
+
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታት ተቆጥሯል ።'},
|
41 |
+
{'score': 0.07067586481571198,
|
42 |
+
'token': 10354,
|
43 |
+
'token_str': 'አመት',
|
44 |
+
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመት ተቆጥሯል ።'},
|
45 |
+
{'score': 0.07064681500196457,
|
46 |
+
'token': 11212,
|
47 |
+
'token_str': 'አመታት',
|
48 |
+
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመታት ተቆጥሯል ።'},
|
49 |
+
{'score': 0.012558948248624802,
|
50 |
+
'token': 10588,
|
51 |
+
'token_str': 'ወራት',
|
52 |
+
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ወራት ተቆጥሯል ።'}]
|
53 |
+
```
|
54 |
+
|
55 |
+
# Fine-tuning
|
56 |
+
|
57 |
+
The following github repository contains a notebook that fine-tunes this model for an Amharic text classification task.
|
58 |
+
|
59 |
+
https://github.com/rasyosef/amharic-news-category-classification
|
60 |
+
|
61 |
+
#### Fine-tuned Model Performance
|
62 |
+
Since this is a multi-class classification task, the reported precision, recall, and f1 metrics are macro averages.
|
63 |
+
|
64 |
+
|Model|Size(# params)|Accuracy|Precision|Recall|F1|
|
65 |
+
|-----|--------------|--------|---------|------|--|
|
66 |
+
|bert-mini-amharic|9.67M|0.87|0.83|0.83|0.83|
|
67 |
+
|bert-small-amharic|25.7M|0.89|0.86|0.87|0.86|
|
68 |
+
|xlm-roberta-base|279M|0.9|0.88|0.88|0.88|
|