--- language: - am library_name: transformers datasets: - oscar - mc4 metrics: - perplexity pipeline_tag: fill-mask widget: - text: ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል። example_title: Example 1 - text: ባለፉት አምስት ዓመታት የአውሮጳ ሀገራት የጦር [MASK] ግዢ በእጅጉ ጨምሯል። example_title: Example 2 - text: ኬንያውያን ከዳር እስከዳር በአንድ ቆመው የተቃውሞ ድምጻቸውን ማሰማታቸውን ተከትሎ የዜጎችን ቁጣ የቀሰቀሰው የቀረጥ ጭማሪ ሕግ ትናንት በፕሬዝደንት ዊልያም ሩቶ [MASK] ቢደረግም ዛሬም ግን የተቃውሞው እንቅስቃሴ መቀጠሉ እየተነገረ ነው። example_title: Example 3 - text: ተማሪዎቹ በውድድሩ ካሸነፉበት የፈጠራ ስራ መካከል [MASK] እና ቅዝቃዜን እንደአየር ሁኔታው የሚያስተካክል ጃኬት አንዱ ነው። example_title: Example 4 --- # bert-mini-amharic This model has the same architecture as [bert-mini](https://huggingface.co/prajjwal1/bert-mini) and was pretrained from scratch using the Amharic subsets of the [oscar](https://huggingface.co/datasets/oscar) and [mc4](https://huggingface.co/datasets/mc4) datasets, on a total of `137 Million` tokens. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 24k. It achieves the following results on the evaluation set: - `Loss: 3.11` - `Perplexity: 22.42` Even though this model only has `10.7 Million` parameters, its performance is only slightly behind the 26x larger `279 Million` parameter [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) model on the same Amharic evaluation set. # How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='rasyosef/bert-mini-amharic') >>> unmasker("ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።") [{'score': 0.6525624394416809, 'token': 9617, 'token_str': 'ዓመታት', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታት ተቆጥሯል ።'}, {'score': 0.22671808302402496, 'token': 9345, 'token_str': 'ዓመት', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመት ተቆጥሯል ።'}, {'score': 0.07071439921855927, 'token': 10898, 'token_str': 'አመታት', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመታት ተቆጥሯል ።'}, {'score': 0.02838180586695671, 'token': 9913, 'token_str': 'አመት', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመት ተቆጥሯል ።'}, {'score': 0.006343209184706211, 'token': 22459, 'token_str': 'ዓመታትን', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታትን ተቆጥሯል ።'}] ``` # Finetuning This model was finetuned and evaluated on the following Amharic NLP tasks - **Sentiment Classification** - Dataset: [amharic-sentiment](https://huggingface.co/datasets/rasyosef/amharic-sentiment) - Code: https://github.com/rasyosef/amharic-sentiment-classification - **Named Entity Recognition** - Dataset: [amharic-named-entity-recognition](https://huggingface.co/datasets/rasyosef/amharic-named-entity-recognition) - Code: https://github.com/rasyosef/amharic-named-entity-recognition - **News Category Classification** - Dataset: [amharic-news-category-classification](https://github.com/rasyosef/amharic-news-category-classification) - Code: https://github.com/rasyosef/amharic-news-category-classification ### Finetuned Model Performance The reported F1 scores are macro averages. |Model|Size (# params)| Perplexity|Sentiment (F1)| Named Entity Recognition (F1)| |-----|---------------|-----------|--------------|------------------------------| |bert-medium-amharic|40.5M|13.74|0.83|0.68| |bert-small-amharic|27.8M|15.96|0.83|0.68| |**bert-mini-amharic**|**10.7M**|**22.42**|**0.81**|**0.64**| |bert-tiny-amharic|4.18M|71.52|0.79|0.54| |xlm-roberta-base|279M||0.83|0.73| |am-roberta|443M||0.82|0.69| ### Amharic News Category Classification |Model|Size(# params)|Accuracy|Precision|Recall|F1| |-----|--------------|--------|---------|------|--| |bert-small-amharic|25.7M|0.89|0.86|0.87|0.86| |**bert-mini-amharic**|9.67M|0.87|0.83|0.83|0.83| |xlm-roberta-base|279M|0.9|0.88|0.88|0.88|