rasyosef commited on
Commit
57dc01c
1 Parent(s): c60942b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -6
README.md CHANGED
@@ -57,15 +57,45 @@ You can use this model directly with a pipeline for masked language modeling:
57
 
58
  # Fine-tuning
59
 
60
- The following github repository contains a [notebook](https://github.com/rasyosef/amharic-news-category-classification/blob/main/%5Bbert-small-amharic%5D%20Amharic%20News%20Category%20Classification.ipynb) that fine-tunes this model for an Amharic text classification task.
61
 
62
- https://github.com/rasyosef/amharic-news-category-classification
 
 
63
 
64
- #### Fine-tuned Model Performance
65
- Since this is a multi-class classification task, the reported precision, recall, and f1 metrics are macro averages.
 
 
 
66
 
67
  |Model|Size(# params)|Accuracy|Precision|Recall|F1|
68
  |-----|--------------|--------|---------|------|--|
69
- |bert-small-amharic|25.7M|0.89|0.86|0.87|0.86|
70
  |bert-mini-amharic|9.67M|0.87|0.83|0.83|0.83|
71
- |xlm-roberta-base|279M|0.9|0.88|0.88|0.88|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  # Fine-tuning
59
 
60
+ This model was finetuned and evaluated on the following amharic nlp tasks
61
 
62
+ - Text Classification
63
+ - Sentiment Classification
64
+ - Named Entity Recognition
65
 
66
+ The reported precision, recall, and f1 metrics are macro averages.
67
+
68
+ ### Amharic News Category Classification
69
+
70
+ The following github repository contains a [notebook](https://github.com/rasyosef/amharic-news-category-classification/blob/main/%5Bbert-small-amharic%5D%20Amharic%20News%20Category%20Classification.ipynb) that fine-tunes this model for an Amharic text classification task using the [amharic-news-category-classification](https://github.com/rasyosef/amharic-news-category-classification) dataset.
71
 
72
  |Model|Size(# params)|Accuracy|Precision|Recall|F1|
73
  |-----|--------------|--------|---------|------|--|
74
+ |**bert-small-amharic**|25.7M|0.89|0.86|0.87|0.86|
75
  |bert-mini-amharic|9.67M|0.87|0.83|0.83|0.83|
76
+ |xlm-roberta-base|279M|0.9|0.88|0.88|0.88|
77
+
78
+ ### Sentiment Classification
79
+ The model was finetuned on the [amharic-sentiment](https://huggingface.co/datasets/rasyosef/amharic-sentiment)
80
+ dataset to classify the given text as having `positive` or `negative` sentiment
81
+
82
+ |Model|Size (# params)| Accuracy | Precision | Recall | F1 |
83
+ | --- | ------------- | -------- | --------- | ------ | -- |
84
+ |bert-medium-amharic|40.5M|0.83|0.83|0.82|0.83|
85
+ |**bert-small-amharic**|27.8M|0.83|0.83|0.82|0.83|
86
+ |bert-mini-amharic|10.7M|0.81|0.81|0.81|0.81|
87
+ |bert-tiny-amharic|4.18M|0.79|0.79|0.79|0.79|
88
+ |xlm-roberta-base|279M|0.83|0.83|0.83|0.83|
89
+ |am-roberta|443M|0.82|0.83|0.82|0.82|
90
+
91
+ ### Named Entity Recognition
92
+ The model was finetuned on the [amharic-named-entity-recognition](https://huggingface.co/datasets/rasyosef/amharic-named-entity-recognition) dataset.
93
+
94
+ |Model|Size (# params)| Precision | Recall | F1 |
95
+ | --- | ------------- | --------- |------- | -- |
96
+ |bert-medium-amharic|40.5M|0.64|0.73|0.68|
97
+ |**bert-small-amharic**|27.8M|0.64|0.72|0.68|
98
+ |bert-mini-amharic|10.7M|0.60|0.67|0.64|
99
+ |bert-tiny-amharic|4.18M|0.50|0.59|0.54|
100
+ |xlm-roberta-base|279M|0.69|0.79|0.73|
101
+ |am-roberta|443M|0.67|0.72|0.69|