File size: 8,059 Bytes
26e232a 3fdd711 1ae29e7 3fdd711 26e232a 2d3722d 1ae29e7 2d3722d 263f675 3fdd711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
license: mit
library_name: transformers
base_model: microsoft/phi-2
datasets:
- teknium/OpenHermes-2.5
- ContextualAI/ultrafeedback_clair_32k
pipeline_tag: text-generation
model-index:
- name: phi-2-instruct-apo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 31.46
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/phi-2-instruct-apo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 21.67
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/phi-2-instruct-apo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.0
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/phi-2-instruct-apo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.68
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/phi-2-instruct-apo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.61
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/phi-2-instruct-apo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 12.83
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/phi-2-instruct-apo
name: Open LLM Leaderboard
---
# Phi-2-Instruct-APO
This is a finetuned version of Microsoft's 2.7B parameter [phi-2](https://huggingface.co/microsoft/phi-2) transfromer model that has underwent a post-training process that incorporates both **supervised fine-tuning** and **anchored preference optimization** for instruction following. I used the [trl](https://huggingface.co/docs/trl/en/index) library and a single **A100 40GB** GPU during both the SFT and APO steps.
- Supervised Fine-Tuning
- SFT Model: [phi-2-sft](https://huggingface.co/rasyosef/phi-2-sft-openhermes-128k-v2)
- Used 128,000 instruction, response pairs from the [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) dataset
- Anchored Preference Optimization (APO)
- LoRA Adapter: [phi-2-apo](https://huggingface.co/rasyosef/phi-2-apo)
- Used 10,000 preference pairs from the [ContextualAI/ultrafeedback_clair_32k](https://huggingface.co/datasets/ContextualAI/ultrafeedback_clair_32k) dataset
## How to use
### Chat Format
Given the nature of the training data, the phi-2 instruct model is best suited for prompts using the chat format as follows.
You can provide the prompt as a question with a generic template as follows:
```markdown
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Question?<|im_end|>
<|im_start|>assistant
```
For example:
```markdown
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
How to explain Internet for a medieval knight?<|im_end|>
<|im_start|>assistant
```
where the model generates the text after `<|im_start|>assistant` .
### Sample inference code
This code snippets show how to get quickly started with running the model on a GPU:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model_id = "rasyosef/phi-2-instruct-apo"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 256,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```
Note: If you want to use flash attention, call _AutoModelForCausalLM.from_pretrained()_ with _attn_implementation="flash_attention_2"_
## Benchmarks
These benchmarks were run using EleutherAI's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)
- **IFEval (Instruction Following Evaluation)**: IFEval is a fairly interesting dataset that tests the capability of models to clearly follow explicit instructions, such as “include keyword x” or “use format y”. The models are tested on their ability to strictly follow formatting instructions rather than the actual contents generated, allowing strict and rigorous metrics to be used.
- **GSM8k (5-shot, flexible-extract)**: diverse grade school math word problems to measure a model's ability to solve multi-step mathematical reasoning problems.
- **MMLU (5-shot)** - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
- **TruthfulQA** - a test to measure a model's propensity to reproduce falsehoods commonly found online. Note: TruthfulQA is technically a 6-shot task in the Harness because each example is prepended with 6 Q/A pairs, even in the 0-shot setting.
- **Winogrande (5-shot)** - an adversarial and difficult Winograd benchmark at scale, for commonsense reasoning.
|Model |[Phi-2-Instruct-APO](https://huggingface.co/rasyosef/phi-2-instruct-apo)|[Phi-2](https://huggingface.co/microsoft/phi-2)|
|:-----|:-------------------------------------------------------------------------|:----------------------------------------------|
|Size (# params)|2.7B|2.7B|
|IFEval|**34.48**|26.53|
|GSM8K|52.16|**56.44**|
|MMLU|44.88|**56.70**|
|TruthfulQA|**49.44**|44.48|
|Winogrande|**75.61**|73.72|
## Code
https://github.com/rasyosef/phi-2-apo
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rasyosef__phi-2-instruct-apo)
| Metric |Value|
|-------------------|----:|
|Avg. |12.04|
|IFEval (0-Shot) |31.46|
|BBH (3-Shot) |21.67|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot) | 2.68|
|MuSR (0-shot) | 3.61|
|MMLU-PRO (5-shot) |12.83|
|