|
from typing import Dict, List, Any |
|
from transformers import AutoProcessor, MusicgenForConditionalGeneration |
|
import torch |
|
|
|
processor = AutoProcessor.from_pretrained("facebook/musicgen-small") |
|
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") |
|
|
|
inputs = processor( |
|
text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
|
|
audio_values = model.generate(**inputs, max_new_tokens=256) |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.processor = AutoProcessor.from_pretrained(path) |
|
self.model = MusicgenForConditionalGeneration.from_pretrained(path) |
|
|
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
""" |
|
Args: |
|
data (:dict:): |
|
The payload with the text prompt and generation parameters. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
|
|
inputs = processor( |
|
text=inputs, |
|
padding=True, |
|
return_tensors="pt",) |
|
|
|
|
|
if parameters is not None: |
|
outputs = self.model.generate(inputs, max_new_tokens=256, **parameters) |
|
else: |
|
outputs = self.model.generate(inputs, max_new_tokens=256) |
|
|
|
|
|
prediction = outputs[0].numpy() |
|
|
|
return [{"generated_audio": prediction}] |