Vaibhav Srivastav
up
5f6ee1c
raw
history blame
1.83 kB
from typing import Dict, List, Any
from transformers import AutoProcessor, MusicgenForConditionalGeneration
import torch
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
inputs = processor(
text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
padding=True,
return_tensors="pt",
)
audio_values = model.generate(**inputs, max_new_tokens=256)
class EndpointHandler:
def __init__(self, path=""):
# load model and processor from path
self.processor = AutoProcessor.from_pretrained(path)
self.model = MusicgenForConditionalGeneration.from_pretrained(path)
# self.model = AutoModelForSeq2SeqLM.from_pretrained(path, device_map="auto", load_in_8bit=True)
# self.tokenizer = AutoTokenizer.from_pretrained(path)
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
"""
Args:
data (:dict:):
The payload with the text prompt and generation parameters.
"""
# process input
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# preprocess
# input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
inputs = processor(
text=inputs,
padding=True,
return_tensors="pt",)
# pass inputs with all kwargs in data
if parameters is not None:
outputs = self.model.generate(inputs, max_new_tokens=256, **parameters)
else:
outputs = self.model.generate(inputs, max_new_tokens=256)
# postprocess the prediction
prediction = outputs[0].numpy()
return [{"generated_audio": prediction}]