real-jiakai commited on
Commit
e158287
1 Parent(s): d831723

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -29
README.md CHANGED
@@ -1,55 +1,137 @@
1
  ---
2
- library_name: transformers
 
3
  license: apache-2.0
4
  base_model: google-bert/bert-base-uncased
5
  tags:
6
  - generated_from_trainer
 
 
 
7
  datasets:
8
  - squad_v2
9
  model-index:
10
- - name: debug_squad2
11
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # debug_squad2
18
-
19
- This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the squad_v2 dataset.
20
 
21
  ## Model description
22
 
23
- More information needed
24
-
25
- ## Intended uses & limitations
26
-
27
- More information needed
28
-
29
- ## Training and evaluation data
30
 
31
- More information needed
 
 
 
 
 
 
32
 
33
  ## Training procedure
34
 
35
  ### Training hyperparameters
36
 
37
- The following hyperparameters were used during training:
38
- - learning_rate: 3e-05
39
- - train_batch_size: 12
40
- - eval_batch_size: 8
41
- - seed: 42
42
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
43
- - lr_scheduler_type: linear
44
- - num_epochs: 5.0
45
 
46
  ### Training results
47
 
48
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  ### Framework versions
51
 
52
- - Transformers 4.47.0.dev0
53
- - Pytorch 2.5.1+cu124
54
- - Datasets 3.1.0
55
- - Tokenizers 0.20.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: apache-2.0
5
  base_model: google-bert/bert-base-uncased
6
  tags:
7
  - generated_from_trainer
8
+ - question-answering
9
+ - squad-v2
10
+ - bert
11
  datasets:
12
  - squad_v2
13
  model-index:
14
+ - name: bert-base-uncased-finetuned-squadv2
15
+ results:
16
+ - task:
17
+ type: question-answering
18
+ name: Question Answering
19
+ dataset:
20
+ name: squad_v2
21
+ type: squad_v2
22
+ config: squad_v2
23
+ metrics:
24
+ - name: HasAns_exact
25
+ type: exact_match
26
+ value: 71.25
27
+ - name: HasAns_f1
28
+ type: f1
29
+ value: 78.77
30
+ - name: NoAns_exact
31
+ type: exact_match
32
+ value: 73.42
33
+ - name: NoAns_f1
34
+ type: f1
35
+ value: 73.42
36
+ - name: best_exact
37
+ type: exact_match
38
+ value: 72.34
39
+ - name: best_f1
40
+ type: f1
41
+ value: 76.09
42
  ---
43
 
44
+ # bert-base-uncased-finetuned-squadv2
 
45
 
46
+ This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the SQuAD v2 dataset. It has been trained to perform extractive question answering with the ability to detect unanswerable questions.
 
 
47
 
48
  ## Model description
49
 
50
+ This model is based on BERT base uncased architecture and has been fine-tuned on SQuAD v2, which extends the original SQuAD dataset to include questions that cannot be answered based on the provided context. The model learns to either provide the answer span from the context or indicate that the question cannot be answered.
 
 
 
 
 
 
51
 
52
+ Key features:
53
+ - Architecture: BERT base uncased (12 layers, 768 hidden size, 12 attention heads)
54
+ - Task: Extractive Question Answering with No-Answer Detection
55
+ - Language: English
56
+ - Training Data: SQuAD v2.0
57
+ - Input: Question and context pairs
58
+ - Output: Answer span or indication that question is unanswerable
59
 
60
  ## Training procedure
61
 
62
  ### Training hyperparameters
63
 
64
+ The model was trained with the following hyperparameters:
65
+ - Learning rate: 3e-05
66
+ - Train batch size: 12
67
+ - Eval batch size: 8
68
+ - Optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
69
+ - LR scheduler: Linear
70
+ - Number of epochs: 5
71
+ - Seed: 42
72
 
73
  ### Training results
74
 
75
+ The model achieved the following performance metrics:
76
+ - HasAns Exact Match: 71.26%
77
+ - HasAns F1: 78.78%
78
+ - NoAns Exact Match: 73.42%
79
+ - NoAns F1: 73.42%
80
+ - Best Exact Match: 72.34%
81
+ - Best F1: 76.10%
82
+
83
+ Additional training statistics:
84
+ - Training samples: 131,754
85
+ - Evaluation samples: 12,134
86
+ - Training time: 31m 58s
87
+ - Evaluation time: 42.89s
88
+ - Training loss: 0.0711
89
+ - Training samples per second: 343.32
90
+ - Training steps per second: 28.61
91
 
92
  ### Framework versions
93
 
94
+ - Transformers: 4.47.0.dev0
95
+ - PyTorch: 2.5.1+cu124
96
+ - Datasets: 3.1.0
97
+ - Tokenizers: 0.20.3
98
+
99
+ ## Intended uses & limitations
100
+
101
+ This model is intended for:
102
+ - Extractive question answering on English text
103
+ - Detecting unanswerable questions
104
+ - General-domain questions and contexts
105
+ - Research and educational purposes
106
+
107
+ Limitations:
108
+ - Performance may vary on domain-specific content
109
+ - May struggle with complex reasoning questions
110
+ - Limited to extractive QA (cannot generate free-form answers)
111
+ - Only works with English language content
112
+
113
+ ## How to use
114
+
115
+ ```python
116
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer
117
+
118
+ # Load model & tokenizer
119
+ model_name = "your-username/bert-base-uncased-finetuned-squadv2"
120
+ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
121
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
122
+
123
+ # Example usage
124
+ context = "The Apollo program was designed to land humans on the Moon and bring them safely back to Earth."
125
+ question = "What was the goal of the Apollo program?"
126
+
127
+ # Tokenize input
128
+ inputs = tokenizer(
129
+ question,
130
+ context,
131
+ add_special_tokens=True,
132
+ return_tensors="pt"
133
+ )
134
+
135
+ # Get model predictions
136
+ outputs = model(**inputs)
137
+ ```