phpaiola commited on
Commit
f269ca7
1 Parent(s): 7092cf5

Upload 2 files

Browse files
Files changed (2) hide show
  1. configuration_phi.py +193 -0
  2. modeling_phi.py +1364 -0
configuration_phi.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json",
27
+ }
28
+
29
+
30
+ class PhiConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
33
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
+ defaults will yield a similar configuration to that of the Phi
35
+ [microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 51200):
42
+ Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`PhiModel`].
44
+ hidden_size (`int`, *optional*, defaults to 2048):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 8192):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 24):
49
+ Number of hidden layers in the Transformer decoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer decoder.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
61
+ Dropout probability for mlp outputs.
62
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
63
+ The dropout ratio for the embeddings.
64
+ attention_dropout (`float`, *optional*, defaults to 0.0):
65
+ The dropout ratio after computing the attention scores.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
70
+ tokens.
71
+ initializer_range (`float`, *optional*, defaults to 0.02):
72
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
73
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
74
+ The epsilon used by the rms normalization layers.
75
+ use_cache (`bool`, *optional*, defaults to `True`):
76
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
77
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
+ Whether to tie weight embeddings
80
+ rope_theta (`float`, *optional*, defaults to 10000.0):
81
+ The base period of the RoPE embeddings.
82
+ rope_scaling (`Dict`, *optional*):
83
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
84
+ strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
85
+ is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
86
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
87
+ these scaling strategies behave:
88
+ https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
89
+ is an experimental feature, subject to breaking API changes in future versions.
90
+ partial_rotary_factor (`float`, *optional*, defaults to 0.5):
91
+ Percentage of the query and keys which will have rotary embedding.
92
+ qk_layernorm (`bool`, *optional*, defaults to `False`):
93
+ Whether or not to normalize the Queries and Keys after projecting the hidden states.
94
+ bos_token_id (`int`, *optional*, defaults to 1):
95
+ Denotes beginning of sequences token id.
96
+ eos_token_id (`int`, *optional*, defaults to 2):
97
+ Denotes end of sequences token id.
98
+
99
+ Example:
100
+
101
+ ```python
102
+ >>> from transformers import PhiModel, PhiConfig
103
+
104
+ >>> # Initializing a Phi-1 style configuration
105
+ >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
106
+
107
+ >>> # Initializing a model from the configuration
108
+ >>> model = PhiModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "phi"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=51200,
120
+ hidden_size=2048,
121
+ intermediate_size=8192,
122
+ num_hidden_layers=24,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ resid_pdrop=0.0,
126
+ embd_pdrop=0.0,
127
+ attention_dropout=0.0,
128
+ hidden_act="gelu_new",
129
+ max_position_embeddings=2048,
130
+ initializer_range=0.02,
131
+ layer_norm_eps=1e-5,
132
+ use_cache=True,
133
+ tie_word_embeddings=False,
134
+ rope_theta=10000.0,
135
+ rope_scaling=None,
136
+ partial_rotary_factor=0.5,
137
+ qk_layernorm=False,
138
+ bos_token_id=1,
139
+ eos_token_id=2,
140
+ **kwargs,
141
+ ):
142
+ self.vocab_size = vocab_size
143
+ self.hidden_size = hidden_size
144
+ self.intermediate_size = intermediate_size
145
+ self.num_hidden_layers = num_hidden_layers
146
+ self.num_attention_heads = num_attention_heads
147
+
148
+ if num_key_value_heads is None:
149
+ num_key_value_heads = num_attention_heads
150
+
151
+ self.num_key_value_heads = num_key_value_heads
152
+ self.resid_pdrop = resid_pdrop
153
+ self.embd_pdrop = embd_pdrop
154
+ self.attention_dropout = attention_dropout
155
+ self.hidden_act = hidden_act
156
+ self.max_position_embeddings = max_position_embeddings
157
+ self.initializer_range = initializer_range
158
+ self.layer_norm_eps = layer_norm_eps
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self.partial_rotary_factor = partial_rotary_factor
163
+ self.qk_layernorm = qk_layernorm
164
+ self._rope_scaling_validation()
165
+
166
+ super().__init__(
167
+ bos_token_id=bos_token_id,
168
+ eos_token_id=eos_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
174
+ def _rope_scaling_validation(self):
175
+ """
176
+ Validate the `rope_scaling` configuration.
177
+ """
178
+ if self.rope_scaling is None:
179
+ return
180
+
181
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
182
+ raise ValueError(
183
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
184
+ f"got {self.rope_scaling}"
185
+ )
186
+ rope_scaling_type = self.rope_scaling.get("type", None)
187
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
188
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
189
+ raise ValueError(
190
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
191
+ )
192
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
193
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
modeling_phi.py ADDED
@@ -0,0 +1,1364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi model."""
17
+
18
+
19
+ import math
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache
30
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ SequenceClassifierOutputWithPast,
35
+ TokenClassifierOutput,
36
+ )
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.utils import (
39
+ add_code_sample_docstrings,
40
+ add_start_docstrings,
41
+ add_start_docstrings_to_model_forward,
42
+ is_flash_attn_2_available,
43
+ is_flash_attn_greater_or_equal_2_10,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+ from .configuration_phi import PhiConfig
48
+
49
+
50
+ if is_flash_attn_2_available():
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
53
+
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+ _CHECKPOINT_FOR_DOC = "microsoft/phi-2"
58
+ _CONFIG_FOR_DOC = "PhiConfig"
59
+
60
+ PHI_PRETRAINED_MODEL_ARCHIVE_LIST = [
61
+ "microsoft/phi-2",
62
+ # See all Phi models at https://huggingface.co/models?filter=phi
63
+ ]
64
+
65
+
66
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
67
+ def _get_unpad_data(attention_mask):
68
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
69
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
70
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
71
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
72
+ return (
73
+ indices,
74
+ cu_seqlens,
75
+ max_seqlen_in_batch,
76
+ )
77
+
78
+
79
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi
80
+ class PhiRotaryEmbedding(nn.Module):
81
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
82
+ super().__init__()
83
+
84
+ self.dim = dim
85
+ self.max_position_embeddings = max_position_embeddings
86
+ self.base = base
87
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
88
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
89
+
90
+ # Build here to make `torch.jit.trace` work.
91
+ self._set_cos_sin_cache(
92
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
93
+ )
94
+
95
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
96
+ self.max_seq_len_cached = seq_len
97
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
98
+
99
+ freqs = torch.outer(t, self.inv_freq)
100
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
101
+ emb = torch.cat((freqs, freqs), dim=-1)
102
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
103
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
104
+
105
+ def forward(self, x, seq_len=None):
106
+ # x: [bs, num_attention_heads, seq_len, head_size]
107
+ if seq_len > self.max_seq_len_cached:
108
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
109
+
110
+ return (
111
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
112
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
113
+ )
114
+
115
+
116
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi
117
+ class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
118
+ """PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
119
+
120
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
121
+ self.scaling_factor = scaling_factor
122
+ super().__init__(dim, max_position_embeddings, base, device)
123
+
124
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
125
+ self.max_seq_len_cached = seq_len
126
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
127
+ t = t / self.scaling_factor
128
+
129
+ freqs = torch.outer(t, self.inv_freq)
130
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
131
+ emb = torch.cat((freqs, freqs), dim=-1)
132
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
133
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
134
+
135
+
136
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi
137
+ class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
138
+ """PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
139
+
140
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
141
+ self.scaling_factor = scaling_factor
142
+ super().__init__(dim, max_position_embeddings, base, device)
143
+
144
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
145
+ self.max_seq_len_cached = seq_len
146
+
147
+ if seq_len > self.max_position_embeddings:
148
+ base = self.base * (
149
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
150
+ ) ** (self.dim / (self.dim - 2))
151
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
152
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
153
+
154
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
155
+
156
+ freqs = torch.outer(t, self.inv_freq)
157
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
158
+ emb = torch.cat((freqs, freqs), dim=-1)
159
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
160
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
161
+
162
+
163
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
164
+ def rotate_half(x):
165
+ """Rotates half the hidden dims of the input."""
166
+ x1 = x[..., : x.shape[-1] // 2]
167
+ x2 = x[..., x.shape[-1] // 2 :]
168
+ return torch.cat((-x2, x1), dim=-1)
169
+
170
+
171
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
172
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
173
+ """Applies Rotary Position Embedding to the query and key tensors.
174
+
175
+ Args:
176
+ q (`torch.Tensor`): The query tensor.
177
+ k (`torch.Tensor`): The key tensor.
178
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
179
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
180
+ position_ids (`torch.Tensor`):
181
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
182
+ used to pass offsetted position ids when working with a KV-cache.
183
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
184
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
185
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
186
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
187
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
188
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
189
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
190
+ Returns:
191
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
192
+ """
193
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
194
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
195
+ q_embed = (q * cos) + (rotate_half(q) * sin)
196
+ k_embed = (k * cos) + (rotate_half(k) * sin)
197
+ return q_embed, k_embed
198
+
199
+
200
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
201
+ class PhiMLP(nn.Module):
202
+ def __init__(self, config):
203
+ super().__init__()
204
+ self.config = config
205
+ self.activation_fn = ACT2FN[config.hidden_act]
206
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
207
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
208
+
209
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
210
+ hidden_states = self.fc1(hidden_states)
211
+ hidden_states = self.activation_fn(hidden_states)
212
+ hidden_states = self.fc2(hidden_states)
213
+ return hidden_states
214
+
215
+
216
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
217
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
218
+ """
219
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
220
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
221
+ """
222
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
223
+ if n_rep == 1:
224
+ return hidden_states
225
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
226
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
227
+
228
+
229
+ class PhiAttention(nn.Module):
230
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
231
+
232
+ def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None):
233
+ super().__init__()
234
+ self.config = config
235
+ self.layer_idx = layer_idx
236
+ if layer_idx is None:
237
+ logger.warning_once(
238
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
239
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
240
+ "when creating this class."
241
+ )
242
+
243
+ self.attention_dropout = config.attention_dropout
244
+ self.hidden_size = config.hidden_size
245
+ self.num_heads = config.num_attention_heads
246
+ self.head_dim = self.hidden_size // self.num_heads
247
+ self.num_key_value_heads = config.num_key_value_heads
248
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
249
+ self.max_position_embeddings = config.max_position_embeddings
250
+ self.rope_theta = config.rope_theta
251
+ self.partial_rotary_factor = config.partial_rotary_factor
252
+ self.is_causal = True
253
+
254
+ if (self.head_dim * self.num_heads) != self.hidden_size:
255
+ raise ValueError(
256
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
257
+ f" and `num_heads`: {self.num_heads})."
258
+ )
259
+
260
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
261
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
262
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
263
+ self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True)
264
+
265
+ self.qk_layernorm = config.qk_layernorm
266
+ if self.qk_layernorm:
267
+ self.q_layernorm = nn.LayerNorm(
268
+ config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
269
+ )
270
+ self.k_layernorm = nn.LayerNorm(
271
+ config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
272
+ )
273
+
274
+ self._init_rope()
275
+
276
+ def _init_rope(self):
277
+ if self.config.rope_scaling is None:
278
+ self.rotary_emb = PhiRotaryEmbedding(
279
+ int(self.partial_rotary_factor * self.head_dim),
280
+ max_position_embeddings=self.max_position_embeddings,
281
+ base=self.rope_theta,
282
+ )
283
+ else:
284
+ scaling_type = self.config.rope_scaling["type"]
285
+ scaling_factor = self.config.rope_scaling["factor"]
286
+ if scaling_type == "linear":
287
+ self.rotary_emb = PhiLinearScalingRotaryEmbedding(
288
+ int(self.partial_rotary_factor * self.head_dim),
289
+ max_position_embeddings=self.max_position_embeddings,
290
+ scaling_factor=scaling_factor,
291
+ base=self.rope_theta,
292
+ )
293
+ elif scaling_type == "dynamic":
294
+ self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
295
+ int(self.partial_rotary_factor * self.head_dim),
296
+ max_position_embeddings=self.max_position_embeddings,
297
+ scaling_factor=scaling_factor,
298
+ base=self.rope_theta,
299
+ )
300
+ else:
301
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
302
+
303
+ def forward(
304
+ self,
305
+ hidden_states: torch.Tensor,
306
+ attention_mask: Optional[torch.Tensor] = None,
307
+ position_ids: Optional[torch.LongTensor] = None,
308
+ past_key_value: Optional[Cache] = None,
309
+ output_attentions: bool = False,
310
+ use_cache: bool = False,
311
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
312
+ bsz, q_len, _ = hidden_states.size()
313
+
314
+ query_states = self.q_proj(hidden_states)
315
+ key_states = self.k_proj(hidden_states)
316
+ value_states = self.v_proj(hidden_states)
317
+
318
+ if self.qk_layernorm:
319
+ query_states = self.q_layernorm(query_states)
320
+ key_states = self.k_layernorm(key_states)
321
+
322
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
323
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
324
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
325
+
326
+ kv_seq_len = key_states.shape[-2]
327
+ if past_key_value is not None:
328
+ if self.layer_idx is None:
329
+ raise ValueError(
330
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
331
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
332
+ "with a layer index."
333
+ )
334
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
335
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
336
+
337
+ # Partial rotary embedding
338
+ query_rot, query_pass = (
339
+ query_states[..., : self.rotary_emb.dim],
340
+ query_states[..., self.rotary_emb.dim :],
341
+ )
342
+ key_rot, key_pass = (
343
+ key_states[..., : self.rotary_emb.dim],
344
+ key_states[..., self.rotary_emb.dim :],
345
+ )
346
+ # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
347
+ query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
348
+
349
+ # [batch_size, seq_length, num_heads, head_dim]
350
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
351
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
352
+
353
+ if past_key_value is not None:
354
+ cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
355
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
356
+
357
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
358
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
359
+
360
+ # Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
361
+ attn_weights = torch.matmul(
362
+ query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
363
+ ) / math.sqrt(self.head_dim)
364
+
365
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
366
+ raise ValueError(
367
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
368
+ f" {attn_weights.size()}"
369
+ )
370
+
371
+ if attention_mask is not None:
372
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
373
+ raise ValueError(
374
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
375
+ )
376
+ attn_weights = attn_weights + attention_mask
377
+
378
+ # upcast attention to fp32
379
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
380
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
381
+
382
+ attn_output = torch.matmul(attn_weights, value_states)
383
+
384
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
385
+ raise ValueError(
386
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
387
+ f" {attn_output.size()}"
388
+ )
389
+
390
+ attn_output = attn_output.transpose(1, 2).contiguous()
391
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
392
+
393
+ attn_output = self.dense(attn_output)
394
+
395
+ if not output_attentions:
396
+ attn_weights = None
397
+
398
+ return attn_output, attn_weights, past_key_value
399
+
400
+
401
+ class PhiFlashAttention2(PhiAttention):
402
+ """
403
+ Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays
404
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
405
+ flash attention and deal with padding tokens in case the input contains any of them.
406
+ """
407
+
408
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
409
+ def __init__(self, *args, **kwargs):
410
+ super().__init__(*args, **kwargs)
411
+
412
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
413
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
414
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
415
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
416
+
417
+ def forward(
418
+ self,
419
+ hidden_states: torch.Tensor,
420
+ attention_mask: Optional[torch.LongTensor] = None,
421
+ position_ids: Optional[torch.LongTensor] = None,
422
+ past_key_value: Optional[Cache] = None,
423
+ output_attentions: bool = False,
424
+ use_cache: bool = False,
425
+ **kwargs,
426
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
427
+ # PhiFlashAttention2 attention does not support output_attentions
428
+
429
+ output_attentions = False
430
+
431
+ bsz, q_len, _ = hidden_states.size()
432
+
433
+ query_states = self.q_proj(hidden_states)
434
+ key_states = self.k_proj(hidden_states)
435
+ value_states = self.v_proj(hidden_states)
436
+
437
+ if self.qk_layernorm:
438
+ query_states = self.q_layernorm(query_states)
439
+ key_states = self.k_layernorm(key_states)
440
+
441
+ # Flash attention requires the input to have the shape
442
+ # batch_size x seq_length x head_dim x hidden_dim
443
+ # therefore we just need to keep the original shape
444
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
445
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
446
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
447
+
448
+ kv_seq_len = key_states.shape[-2]
449
+ if past_key_value is not None:
450
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
451
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
452
+
453
+ # Partial rotary embedding
454
+ query_rot, query_pass = (
455
+ query_states[..., : self.rotary_emb.dim],
456
+ query_states[..., self.rotary_emb.dim :],
457
+ )
458
+ key_rot, key_pass = (
459
+ key_states[..., : self.rotary_emb.dim],
460
+ key_states[..., self.rotary_emb.dim :],
461
+ )
462
+ # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
463
+ query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
464
+
465
+ # [batch_size, seq_length, num_heads, head_dim]
466
+ query_states = torch.cat((query_rot, query_pass), dim=-1)
467
+ key_states = torch.cat((key_rot, key_pass), dim=-1)
468
+
469
+ if past_key_value is not None:
470
+ cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
471
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
472
+
473
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
474
+ # to be able to avoid many of these transpose/reshape/view.
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ attn_dropout = self.attention_dropout if self.training else 0.0
480
+
481
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
482
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
483
+ # cast them back in the correct dtype just to be sure everything works as expected.
484
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
485
+ # in fp32.
486
+
487
+ if query_states.dtype == torch.float32:
488
+ if torch.is_autocast_enabled():
489
+ target_dtype = torch.get_autocast_gpu_dtype()
490
+ # Handle the case where the model is quantized
491
+ elif hasattr(self.config, "_pre_quantization_dtype"):
492
+ target_dtype = self.config._pre_quantization_dtype
493
+ else:
494
+ target_dtype = self.q_proj.weight.dtype
495
+
496
+ logger.warning_once(
497
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
498
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
499
+ f" {target_dtype}."
500
+ )
501
+
502
+ query_states = query_states.to(target_dtype)
503
+ key_states = key_states.to(target_dtype)
504
+ value_states = value_states.to(target_dtype)
505
+
506
+ attn_output = self._flash_attention_forward(
507
+ query_states, key_states, value_states, attention_mask, q_len, dropout=attn_dropout, softmax_scale=1.0
508
+ )
509
+
510
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
511
+ attn_output = self.dense(attn_output)
512
+
513
+ if not output_attentions:
514
+ attn_weights = None
515
+
516
+ return attn_output, attn_weights, past_key_value
517
+
518
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
519
+ def _flash_attention_forward(
520
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
521
+ ):
522
+ """
523
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
524
+ first unpad the input, then computes the attention scores and pad the final attention scores.
525
+
526
+ Args:
527
+ query_states (`torch.Tensor`):
528
+ Input query states to be passed to Flash Attention API
529
+ key_states (`torch.Tensor`):
530
+ Input key states to be passed to Flash Attention API
531
+ value_states (`torch.Tensor`):
532
+ Input value states to be passed to Flash Attention API
533
+ attention_mask (`torch.Tensor`):
534
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
535
+ position of padding tokens and 1 for the position of non-padding tokens.
536
+ dropout (`int`, *optional*):
537
+ Attention dropout
538
+ softmax_scale (`float`, *optional*):
539
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
540
+ """
541
+ if not self._flash_attn_uses_top_left_mask:
542
+ causal = self.is_causal
543
+ else:
544
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
545
+ causal = self.is_causal and query_length != 1
546
+
547
+ # Contains at least one padding token in the sequence
548
+ if attention_mask is not None:
549
+ batch_size = query_states.shape[0]
550
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
551
+ query_states, key_states, value_states, attention_mask, query_length
552
+ )
553
+
554
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
555
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
556
+
557
+ attn_output_unpad = flash_attn_varlen_func(
558
+ query_states,
559
+ key_states,
560
+ value_states,
561
+ cu_seqlens_q=cu_seqlens_q,
562
+ cu_seqlens_k=cu_seqlens_k,
563
+ max_seqlen_q=max_seqlen_in_batch_q,
564
+ max_seqlen_k=max_seqlen_in_batch_k,
565
+ dropout_p=dropout,
566
+ softmax_scale=softmax_scale,
567
+ causal=causal,
568
+ )
569
+
570
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
571
+ else:
572
+ attn_output = flash_attn_func(
573
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
574
+ )
575
+
576
+ return attn_output
577
+
578
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
579
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
580
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
581
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
582
+
583
+ key_layer = index_first_axis(
584
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
585
+ )
586
+ value_layer = index_first_axis(
587
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
588
+ )
589
+ if query_length == kv_seq_len:
590
+ query_layer = index_first_axis(
591
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
592
+ )
593
+ cu_seqlens_q = cu_seqlens_k
594
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
595
+ indices_q = indices_k
596
+ elif query_length == 1:
597
+ max_seqlen_in_batch_q = 1
598
+ cu_seqlens_q = torch.arange(
599
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
600
+ ) # There is a memcpy here, that is very bad.
601
+ indices_q = cu_seqlens_q[:-1]
602
+ query_layer = query_layer.squeeze(1)
603
+ else:
604
+ # The -q_len: slice assumes left padding.
605
+ attention_mask = attention_mask[:, -query_length:]
606
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
607
+
608
+ return (
609
+ query_layer,
610
+ key_layer,
611
+ value_layer,
612
+ indices_q,
613
+ (cu_seqlens_q, cu_seqlens_k),
614
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
615
+ )
616
+
617
+
618
+ PHI_ATTENTION_CLASSES = {
619
+ "eager": PhiAttention,
620
+ "flash_attention_2": PhiFlashAttention2,
621
+ }
622
+
623
+
624
+ class PhiDecoderLayer(nn.Module):
625
+ def __init__(self, config: PhiConfig, layer_idx: int):
626
+ super().__init__()
627
+ self.self_attn = PHI_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
628
+ self.mlp = PhiMLP(config)
629
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
630
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
631
+
632
+ def forward(
633
+ self,
634
+ hidden_states: torch.Tensor,
635
+ attention_mask: Optional[torch.Tensor] = None,
636
+ position_ids: Optional[torch.LongTensor] = None,
637
+ output_attentions: Optional[bool] = False,
638
+ use_cache: Optional[bool] = False,
639
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
640
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
641
+ """
642
+ Args:
643
+ hidden_states (`torch.FloatTensor`):
644
+ input to the layer of shape `(batch, seq_len, embed_dim)`
645
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
646
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
647
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
648
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
649
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
650
+ output_attentions (`bool`, *optional*):
651
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
652
+ returned tensors for more detail.
653
+ use_cache (`bool`, *optional*):
654
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
655
+ (see `past_key_values`).
656
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
657
+ """
658
+
659
+ residual = hidden_states
660
+
661
+ hidden_states = self.input_layernorm(hidden_states)
662
+
663
+ # Self Attention
664
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
665
+ hidden_states=hidden_states,
666
+ attention_mask=attention_mask,
667
+ position_ids=position_ids,
668
+ past_key_value=past_key_value,
669
+ output_attentions=output_attentions,
670
+ use_cache=use_cache,
671
+ )
672
+ attn_outputs = self.resid_dropout(attn_outputs)
673
+
674
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
675
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
676
+ outputs = (hidden_states,)
677
+
678
+ if output_attentions:
679
+ outputs += (self_attn_weights,)
680
+
681
+ if use_cache:
682
+ outputs += (present_key_value,)
683
+
684
+ return outputs
685
+
686
+
687
+ PHI_START_DOCSTRING = r"""
688
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
689
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
690
+ etc.)
691
+
692
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
693
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
694
+ and behavior.
695
+
696
+ Parameters:
697
+ config ([`PhiConfig`]):
698
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
699
+ load the weights associated with the model, only the configuration. Check out the
700
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
701
+ """
702
+
703
+
704
+ @add_start_docstrings(
705
+ "The bare Phi Model outputting raw hidden-states without any specific head on top.",
706
+ PHI_START_DOCSTRING,
707
+ )
708
+ class PhiPreTrainedModel(PreTrainedModel):
709
+ config_class = PhiConfig
710
+ base_model_prefix = "model"
711
+ supports_gradient_checkpointing = True
712
+ _no_split_modules = ["PhiDecoderLayer"]
713
+ _skip_keys_device_placement = "past_key_values"
714
+ _supports_flash_attn_2 = True
715
+ _supports_cache_class = True
716
+
717
+ def _init_weights(self, module):
718
+ std = self.config.initializer_range
719
+ if isinstance(module, nn.Linear):
720
+ module.weight.data.normal_(mean=0.0, std=std)
721
+ if module.bias is not None:
722
+ module.bias.data.zero_()
723
+ elif isinstance(module, nn.Embedding):
724
+ module.weight.data.normal_(mean=0.0, std=std)
725
+ if module.padding_idx is not None:
726
+ module.weight.data[module.padding_idx].zero_()
727
+
728
+
729
+ PHI_INPUTS_DOCSTRING = r"""
730
+ Args:
731
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
732
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
733
+ it.
734
+
735
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
736
+ [`PreTrainedTokenizer.__call__`] for details.
737
+
738
+ [What are input IDs?](../glossary#input-ids)
739
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
740
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
741
+
742
+ - 1 for tokens that are **not masked**,
743
+ - 0 for tokens that are **masked**.
744
+
745
+ [What are attention masks?](../glossary#attention-mask)
746
+
747
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
748
+ [`PreTrainedTokenizer.__call__`] for details.
749
+
750
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
751
+ `past_key_values`).
752
+
753
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
754
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
755
+ information on the default strategy.
756
+
757
+ - 1 indicates the head is **not masked**,
758
+ - 0 indicates the head is **masked**.
759
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
760
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
761
+ config.n_positions - 1]`.
762
+
763
+ [What are position IDs?](../glossary#position-ids)
764
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
765
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
766
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
767
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
768
+
769
+ Two formats are allowed:
770
+ - a [`~cache_utils.Cache`] instance;
771
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
772
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
773
+ cache format.
774
+
775
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
776
+ legacy cache format will be returned.
777
+
778
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
779
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
780
+ of shape `(batch_size, sequence_length)`.
781
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
782
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
783
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
784
+ model's internal embedding lookup matrix.
785
+ use_cache (`bool`, *optional*):
786
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
787
+ `past_key_values`).
788
+ output_attentions (`bool`, *optional*):
789
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
790
+ tensors for more detail.
791
+ output_hidden_states (`bool`, *optional*):
792
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
793
+ more detail.
794
+ return_dict (`bool`, *optional*):
795
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
796
+ """
797
+
798
+
799
+ @add_start_docstrings(
800
+ "The bare Phi Model outputting raw hidden-states without any specific head on top.",
801
+ PHI_START_DOCSTRING,
802
+ )
803
+ class PhiModel(PhiPreTrainedModel):
804
+ """
805
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
806
+
807
+ Args:
808
+ config: PhiConfig
809
+ """
810
+
811
+ def __init__(self, config: PhiConfig):
812
+ super().__init__(config)
813
+ self.padding_idx = config.pad_token_id
814
+ self.vocab_size = config.vocab_size
815
+
816
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
817
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
818
+ self.layers = nn.ModuleList(
819
+ [PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
820
+ )
821
+ self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
822
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
823
+
824
+ self.gradient_checkpointing = False
825
+ # Initialize weights and apply final processing
826
+ self.post_init()
827
+
828
+ def get_input_embeddings(self):
829
+ return self.embed_tokens
830
+
831
+ def set_input_embeddings(self, value):
832
+ self.embed_tokens = value
833
+
834
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
835
+ def forward(
836
+ self,
837
+ input_ids: torch.LongTensor = None,
838
+ attention_mask: Optional[torch.Tensor] = None,
839
+ position_ids: Optional[torch.LongTensor] = None,
840
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
841
+ inputs_embeds: Optional[torch.FloatTensor] = None,
842
+ use_cache: Optional[bool] = None,
843
+ output_attentions: Optional[bool] = None,
844
+ output_hidden_states: Optional[bool] = None,
845
+ return_dict: Optional[bool] = None,
846
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
847
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
848
+ output_hidden_states = (
849
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
850
+ )
851
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
852
+
853
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
854
+
855
+ # retrieve input_ids and inputs_embeds
856
+ if input_ids is not None and inputs_embeds is not None:
857
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
858
+ elif input_ids is not None:
859
+ batch_size, seq_length = input_ids.shape[:2]
860
+ elif inputs_embeds is not None:
861
+ batch_size, seq_length = inputs_embeds.shape[:2]
862
+ else:
863
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
864
+
865
+ past_key_values_length = 0
866
+
867
+ if self.gradient_checkpointing and self.training:
868
+ if use_cache:
869
+ logger.warning_once(
870
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
871
+ )
872
+ use_cache = False
873
+
874
+ if use_cache:
875
+ use_legacy_cache = not isinstance(past_key_values, Cache)
876
+ if use_legacy_cache:
877
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
878
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
879
+
880
+ if position_ids is None:
881
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
882
+ position_ids = torch.arange(
883
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
884
+ )
885
+ position_ids = position_ids.unsqueeze(0)
886
+
887
+ if inputs_embeds is None:
888
+ inputs_embeds = self.embed_tokens(input_ids)
889
+
890
+ inputs_embeds = self.embed_dropout(inputs_embeds)
891
+
892
+ # Attention mask.
893
+ if self._use_flash_attention_2:
894
+ # 2d mask is passed through the layers
895
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
896
+ else:
897
+ # 4d mask is passed through the layers
898
+ attention_mask = _prepare_4d_causal_attention_mask(
899
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
900
+ )
901
+
902
+ hidden_states = inputs_embeds
903
+
904
+ # decoder layers
905
+ all_hidden_states = () if output_hidden_states else None
906
+ all_self_attns = () if output_attentions else None
907
+ next_decoder_cache = None
908
+
909
+ for decoder_layer in self.layers:
910
+ if output_hidden_states:
911
+ all_hidden_states += (hidden_states,)
912
+
913
+ if self.gradient_checkpointing and self.training:
914
+ layer_outputs = self._gradient_checkpointing_func(
915
+ decoder_layer.__call__,
916
+ hidden_states,
917
+ attention_mask,
918
+ position_ids,
919
+ past_key_values,
920
+ output_attentions,
921
+ )
922
+ else:
923
+ layer_outputs = decoder_layer(
924
+ hidden_states,
925
+ attention_mask=attention_mask,
926
+ position_ids=position_ids,
927
+ past_key_value=past_key_values,
928
+ output_attentions=output_attentions,
929
+ use_cache=use_cache,
930
+ )
931
+
932
+ hidden_states = layer_outputs[0]
933
+
934
+ if use_cache:
935
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
936
+
937
+ if output_attentions:
938
+ all_self_attns += (layer_outputs[1],)
939
+
940
+ hidden_states = self.final_layernorm(hidden_states)
941
+
942
+ # add hidden states from the last decoder layer
943
+ if output_hidden_states:
944
+ all_hidden_states += (hidden_states,)
945
+
946
+ next_cache = None
947
+ if use_cache:
948
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
949
+ if not return_dict:
950
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
951
+ return BaseModelOutputWithPast(
952
+ last_hidden_state=hidden_states,
953
+ past_key_values=next_cache,
954
+ hidden_states=all_hidden_states,
955
+ attentions=all_self_attns,
956
+ )
957
+
958
+
959
+ class PhiForCausalLM(PhiPreTrainedModel):
960
+ _tied_weights_keys = ["lm_head.weight"]
961
+
962
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True
963
+ def __init__(self, config):
964
+ super().__init__(config)
965
+ self.model = PhiModel(config)
966
+ self.vocab_size = config.vocab_size
967
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
968
+
969
+ # Initialize weights and apply final processing
970
+ self.post_init()
971
+
972
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
973
+ def get_input_embeddings(self):
974
+ return self.model.embed_tokens
975
+
976
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
977
+ def set_input_embeddings(self, value):
978
+ self.model.embed_tokens = value
979
+
980
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
981
+ def get_output_embeddings(self):
982
+ return self.lm_head
983
+
984
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
985
+ def set_output_embeddings(self, new_embeddings):
986
+ self.lm_head = new_embeddings
987
+
988
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
989
+ def set_decoder(self, decoder):
990
+ self.model = decoder
991
+
992
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
993
+ def get_decoder(self):
994
+ return self.model
995
+
996
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
997
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
998
+ def forward(
999
+ self,
1000
+ input_ids: torch.LongTensor = None,
1001
+ attention_mask: Optional[torch.Tensor] = None,
1002
+ position_ids: Optional[torch.LongTensor] = None,
1003
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1004
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1005
+ labels: Optional[torch.LongTensor] = None,
1006
+ use_cache: Optional[bool] = None,
1007
+ output_attentions: Optional[bool] = None,
1008
+ output_hidden_states: Optional[bool] = None,
1009
+ return_dict: Optional[bool] = None,
1010
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1011
+ r"""
1012
+ Args:
1013
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1014
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1015
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1016
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1017
+
1018
+ Returns:
1019
+
1020
+ Example:
1021
+
1022
+ ```python
1023
+ >>> from transformers import AutoTokenizer, PhiForCausalLM
1024
+
1025
+ >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1")
1026
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
1027
+
1028
+ >>> prompt = "This is an example script ."
1029
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1030
+
1031
+ >>> # Generate
1032
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1033
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1034
+ 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
1035
+ ```"""
1036
+
1037
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1038
+ output_hidden_states = (
1039
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1040
+ )
1041
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1042
+
1043
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1044
+ outputs = self.model(
1045
+ input_ids=input_ids,
1046
+ attention_mask=attention_mask,
1047
+ position_ids=position_ids,
1048
+ past_key_values=past_key_values,
1049
+ inputs_embeds=inputs_embeds,
1050
+ use_cache=use_cache,
1051
+ output_attentions=output_attentions,
1052
+ output_hidden_states=output_hidden_states,
1053
+ return_dict=return_dict,
1054
+ )
1055
+
1056
+ hidden_states = outputs[0]
1057
+ logits = self.lm_head(hidden_states)
1058
+ logits = logits.float()
1059
+
1060
+ loss = None
1061
+ if labels is not None:
1062
+ # Shift so that tokens < n predict n
1063
+ shift_logits = logits[..., :-1, :].contiguous()
1064
+ shift_labels = labels[..., 1:].contiguous()
1065
+ # Flatten the tokens
1066
+ loss_fct = CrossEntropyLoss()
1067
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1068
+ shift_labels = shift_labels.view(-1)
1069
+ # Enable model parallelism
1070
+ shift_labels = shift_labels.to(shift_logits.device)
1071
+ loss = loss_fct(shift_logits, shift_labels)
1072
+
1073
+ if not return_dict:
1074
+ output = (logits,) + outputs[1:]
1075
+ return (loss,) + output if loss is not None else output
1076
+
1077
+ return CausalLMOutputWithPast(
1078
+ loss=loss,
1079
+ logits=logits,
1080
+ past_key_values=outputs.past_key_values,
1081
+ hidden_states=outputs.hidden_states,
1082
+ attentions=outputs.attentions,
1083
+ )
1084
+
1085
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
1086
+ def prepare_inputs_for_generation(
1087
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1088
+ ):
1089
+ if past_key_values is not None:
1090
+ if isinstance(past_key_values, Cache):
1091
+ cache_length = past_key_values.get_seq_length()
1092
+ past_length = past_key_values.seen_tokens
1093
+ max_cache_length = past_key_values.get_max_length()
1094
+ else:
1095
+ cache_length = past_length = past_key_values[0][0].shape[2]
1096
+ max_cache_length = None
1097
+
1098
+ # Keep only the unprocessed tokens:
1099
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1100
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1101
+ # input)
1102
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1103
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1104
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1105
+ # input_ids based on the past_length.
1106
+ elif past_length < input_ids.shape[1]:
1107
+ input_ids = input_ids[:, past_length:]
1108
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1109
+
1110
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1111
+ if (
1112
+ max_cache_length is not None
1113
+ and attention_mask is not None
1114
+ and cache_length + input_ids.shape[1] > max_cache_length
1115
+ ):
1116
+ attention_mask = attention_mask[:, -max_cache_length:]
1117
+
1118
+ position_ids = kwargs.get("position_ids", None)
1119
+ if attention_mask is not None and position_ids is None:
1120
+ # create position_ids on the fly for batch generation
1121
+ position_ids = attention_mask.long().cumsum(-1) - 1
1122
+ position_ids.masked_fill_(attention_mask == 0, 1)
1123
+ if past_key_values:
1124
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1125
+
1126
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1127
+ if inputs_embeds is not None and past_key_values is None:
1128
+ model_inputs = {"inputs_embeds": inputs_embeds}
1129
+ else:
1130
+ model_inputs = {"input_ids": input_ids}
1131
+
1132
+ model_inputs.update(
1133
+ {
1134
+ "position_ids": position_ids,
1135
+ "past_key_values": past_key_values,
1136
+ "use_cache": kwargs.get("use_cache"),
1137
+ "attention_mask": attention_mask,
1138
+ }
1139
+ )
1140
+ return model_inputs
1141
+
1142
+ @staticmethod
1143
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1144
+ def _reorder_cache(past_key_values, beam_idx):
1145
+ reordered_past = ()
1146
+ for layer_past in past_key_values:
1147
+ reordered_past += (
1148
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1149
+ )
1150
+ return reordered_past
1151
+
1152
+
1153
+ @add_start_docstrings(
1154
+ """
1155
+ The PhiModel with a sequence classification head on top (linear layer).
1156
+
1157
+ [`PhiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1158
+ (e.g. GPT-2) do.
1159
+
1160
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1161
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1162
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1163
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1164
+ each row of the batch).
1165
+ """,
1166
+ PHI_START_DOCSTRING,
1167
+ )
1168
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->PHI,Llama->Phi with self.transformer->self.model, transformer_outputs->model_outputs
1169
+ class PhiForSequenceClassification(PhiPreTrainedModel):
1170
+ def __init__(self, config):
1171
+ super().__init__(config)
1172
+ self.num_labels = config.num_labels
1173
+ self.model = PhiModel(config)
1174
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1175
+
1176
+ # Initialize weights and apply final processing
1177
+ self.post_init()
1178
+
1179
+ def get_input_embeddings(self):
1180
+ return self.model.embed_tokens
1181
+
1182
+ def set_input_embeddings(self, value):
1183
+ self.model.embed_tokens = value
1184
+
1185
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
1186
+ def forward(
1187
+ self,
1188
+ input_ids: torch.LongTensor = None,
1189
+ attention_mask: Optional[torch.Tensor] = None,
1190
+ position_ids: Optional[torch.LongTensor] = None,
1191
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1192
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1193
+ labels: Optional[torch.LongTensor] = None,
1194
+ use_cache: Optional[bool] = None,
1195
+ output_attentions: Optional[bool] = None,
1196
+ output_hidden_states: Optional[bool] = None,
1197
+ return_dict: Optional[bool] = None,
1198
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1199
+ r"""
1200
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1201
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1202
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1203
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1204
+ """
1205
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1206
+
1207
+ model_outputs = self.model(
1208
+ input_ids,
1209
+ attention_mask=attention_mask,
1210
+ position_ids=position_ids,
1211
+ past_key_values=past_key_values,
1212
+ inputs_embeds=inputs_embeds,
1213
+ use_cache=use_cache,
1214
+ output_attentions=output_attentions,
1215
+ output_hidden_states=output_hidden_states,
1216
+ return_dict=return_dict,
1217
+ )
1218
+ hidden_states = model_outputs[0]
1219
+ logits = self.score(hidden_states)
1220
+
1221
+ if input_ids is not None:
1222
+ batch_size = input_ids.shape[0]
1223
+ else:
1224
+ batch_size = inputs_embeds.shape[0]
1225
+
1226
+ if self.config.pad_token_id is None and batch_size != 1:
1227
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1228
+ if self.config.pad_token_id is None:
1229
+ sequence_lengths = -1
1230
+ else:
1231
+ if input_ids is not None:
1232
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1233
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1234
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1235
+ sequence_lengths = sequence_lengths.to(logits.device)
1236
+ else:
1237
+ sequence_lengths = -1
1238
+
1239
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1240
+
1241
+ loss = None
1242
+ if labels is not None:
1243
+ labels = labels.to(logits.device)
1244
+ if self.config.problem_type is None:
1245
+ if self.num_labels == 1:
1246
+ self.config.problem_type = "regression"
1247
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1248
+ self.config.problem_type = "single_label_classification"
1249
+ else:
1250
+ self.config.problem_type = "multi_label_classification"
1251
+
1252
+ if self.config.problem_type == "regression":
1253
+ loss_fct = MSELoss()
1254
+ if self.num_labels == 1:
1255
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1256
+ else:
1257
+ loss = loss_fct(pooled_logits, labels)
1258
+ elif self.config.problem_type == "single_label_classification":
1259
+ loss_fct = CrossEntropyLoss()
1260
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1261
+ elif self.config.problem_type == "multi_label_classification":
1262
+ loss_fct = BCEWithLogitsLoss()
1263
+ loss = loss_fct(pooled_logits, labels)
1264
+ if not return_dict:
1265
+ output = (pooled_logits,) + model_outputs[1:]
1266
+ return ((loss,) + output) if loss is not None else output
1267
+
1268
+ return SequenceClassifierOutputWithPast(
1269
+ loss=loss,
1270
+ logits=pooled_logits,
1271
+ past_key_values=model_outputs.past_key_values,
1272
+ hidden_states=model_outputs.hidden_states,
1273
+ attentions=model_outputs.attentions,
1274
+ )
1275
+
1276
+
1277
+ @add_start_docstrings(
1278
+ """
1279
+ PhiModel with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1280
+ Named-Entity-Recognition (NER) tasks.
1281
+ """,
1282
+ PHI_START_DOCSTRING,
1283
+ )
1284
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with MPT->PHI,Mpt->Phi,self.transformer->self.model,transformer_outputs->model_outputs
1285
+ class PhiForTokenClassification(PhiPreTrainedModel):
1286
+ def __init__(self, config: PhiConfig):
1287
+ super().__init__(config)
1288
+ self.num_labels = config.num_labels
1289
+
1290
+ self.model = PhiModel(config)
1291
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1292
+ classifier_dropout = config.classifier_dropout
1293
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1294
+ classifier_dropout = config.hidden_dropout
1295
+ else:
1296
+ classifier_dropout = 0.1
1297
+ self.dropout = nn.Dropout(classifier_dropout)
1298
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1299
+
1300
+ # Initialize weights and apply final processing
1301
+ self.post_init()
1302
+
1303
+ @add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
1304
+ @add_code_sample_docstrings(
1305
+ checkpoint=_CHECKPOINT_FOR_DOC,
1306
+ output_type=TokenClassifierOutput,
1307
+ config_class=_CONFIG_FOR_DOC,
1308
+ )
1309
+ def forward(
1310
+ self,
1311
+ input_ids: Optional[torch.LongTensor] = None,
1312
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1313
+ attention_mask: Optional[torch.Tensor] = None,
1314
+ inputs_embeds: Optional[torch.Tensor] = None,
1315
+ labels: Optional[torch.Tensor] = None,
1316
+ use_cache: Optional[bool] = None,
1317
+ output_attentions: Optional[bool] = None,
1318
+ output_hidden_states: Optional[bool] = None,
1319
+ return_dict: Optional[bool] = None,
1320
+ **deprecated_arguments,
1321
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1322
+ r"""
1323
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1324
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1325
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1326
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1327
+ """
1328
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1329
+
1330
+ model_outputs = self.model(
1331
+ input_ids,
1332
+ past_key_values=past_key_values,
1333
+ attention_mask=attention_mask,
1334
+ inputs_embeds=inputs_embeds,
1335
+ use_cache=use_cache,
1336
+ output_attentions=output_attentions,
1337
+ output_hidden_states=output_hidden_states,
1338
+ return_dict=return_dict,
1339
+ )
1340
+
1341
+ hidden_states = model_outputs[0]
1342
+ hidden_states = self.dropout(hidden_states)
1343
+ logits = self.classifier(hidden_states)
1344
+
1345
+ loss = None
1346
+ if labels is not None:
1347
+ # move labels to correct device to enable model parallelism
1348
+ labels = labels.to(logits.device)
1349
+ batch_size, seq_length = labels.shape
1350
+ loss_fct = CrossEntropyLoss()
1351
+ loss = loss_fct(
1352
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1353
+ )
1354
+
1355
+ if not return_dict:
1356
+ output = (logits,) + model_outputs[2:]
1357
+ return ((loss,) + output) if loss is not None else output
1358
+
1359
+ return TokenClassifierOutput(
1360
+ loss=loss,
1361
+ logits=logits,
1362
+ hidden_states=model_outputs.hidden_states,
1363
+ attentions=model_outputs.attentions,
1364
+ )