Upload folder using huggingface_hub
Browse files- README.md +4 -3
- config.json +33 -0
- configuration_rwkv6qwen2.py +190 -0
- generation_config.json +7 -0
- merges.txt +0 -0
- model-00001-of-00015.safetensors +3 -0
- model-00002-of-00015.safetensors +3 -0
- model-00003-of-00015.safetensors +3 -0
- model-00004-of-00015.safetensors +3 -0
- model-00005-of-00015.safetensors +3 -0
- model-00006-of-00015.safetensors +3 -0
- model-00007-of-00015.safetensors +3 -0
- model-00008-of-00015.safetensors +3 -0
- model-00009-of-00015.safetensors +3 -0
- model-00010-of-00015.safetensors +3 -0
- model-00011-of-00015.safetensors +3 -0
- model-00012-of-00015.safetensors +3 -0
- model-00013-of-00015.safetensors +3 -0
- model-00014-of-00015.safetensors +3 -0
- model-00015-of-00015.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_rwkv6qwen2.py +1210 -0
- tokenizer.json +0 -0
- tokenizer_config.json +207 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: transformers
|
4 |
+
---
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RWKV6Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_rwkv6qwen2.RWKV6Qwen2Config",
|
7 |
+
"AutoModelForCausalLM": "modeling_rwkv6qwen2.RWKV6Qwen2ForCausalLM"
|
8 |
+
},
|
9 |
+
"attention_bias": true,
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"attention_output_bias": false,
|
12 |
+
"bos_token_id": 151643,
|
13 |
+
"eos_token_id": 151643,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 5120,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 27648,
|
18 |
+
"max_position_embeddings": 131072,
|
19 |
+
"max_window_layers": 64,
|
20 |
+
"model_type": "rwkv6qwen2",
|
21 |
+
"num_attention_heads": 40,
|
22 |
+
"num_hidden_layers": 64,
|
23 |
+
"num_key_value_heads": 8,
|
24 |
+
"rms_norm_eps": 1e-05,
|
25 |
+
"rope_theta": 1000000.0,
|
26 |
+
"sliding_window": 131072,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "bfloat16",
|
29 |
+
"transformers_version": "4.43.1",
|
30 |
+
"use_cache": true,
|
31 |
+
"use_sliding_window": false,
|
32 |
+
"vocab_size": 152064
|
33 |
+
}
|
configuration_rwkv6qwen2.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""RWKV6Qwen2 model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class RWKV6Qwen2Config(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`RWKV6Qwen2Model`]. It is used to instantiate a
|
28 |
+
RWKV6Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
29 |
+
with the defaults will yield a similar configuration to that of
|
30 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
38 |
+
Vocabulary size of the RWKV6Qwen2 model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`RWKV6Qwen2Model`]
|
40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
41 |
+
Dimension of the hidden representations.
|
42 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
43 |
+
Dimension of the MLP representations.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
+
Number of hidden layers in the Transformer encoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
53 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
54 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
56 |
+
The non-linear activation function (function or string) in the decoder.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
58 |
+
The maximum sequence length that this model might ever be used with.
|
59 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
60 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
61 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
62 |
+
The epsilon used by the rms normalization layers.
|
63 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
65 |
+
relevant if `config.is_decoder=True`.
|
66 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
67 |
+
Whether the model's input and output word embeddings should be tied.
|
68 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
69 |
+
The base period of the RoPE embeddings.
|
70 |
+
rope_scaling (`Dict`, *optional*):
|
71 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
72 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
73 |
+
accordingly.
|
74 |
+
Expected contents:
|
75 |
+
`rope_type` (`str`):
|
76 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
77 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
78 |
+
`factor` (`float`, *optional*):
|
79 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
80 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
81 |
+
original maximum pre-trained length.
|
82 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
83 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
84 |
+
pretraining.
|
85 |
+
`attention_factor` (`float`, *optional*):
|
86 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
87 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
88 |
+
`factor` field to infer the suggested value.
|
89 |
+
`beta_fast` (`float`, *optional*):
|
90 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
91 |
+
ramp function. If unspecified, it defaults to 32.
|
92 |
+
`beta_slow` (`float`, *optional*):
|
93 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
94 |
+
ramp function. If unspecified, it defaults to 1.
|
95 |
+
`short_factor` (`List[float]`, *optional*):
|
96 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
97 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
98 |
+
size divided by the number of attention heads divided by 2
|
99 |
+
`long_factor` (`List[float]`, *optional*):
|
100 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
101 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
102 |
+
size divided by the number of attention heads divided by 2
|
103 |
+
`low_freq_factor` (`float`, *optional*):
|
104 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
105 |
+
`high_freq_factor` (`float`, *optional*):
|
106 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
107 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
108 |
+
Whether to use sliding window attention.
|
109 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
110 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
111 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
112 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
113 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
114 |
+
The dropout ratio for the attention probabilities.
|
115 |
+
|
116 |
+
```python
|
117 |
+
>>> from transformers import RWKV6Qwen2Model, RWKV6Qwen2Config
|
118 |
+
|
119 |
+
>>> # Initializing a RWKV6Qwen2 style configuration
|
120 |
+
>>> configuration = RWKV6Qwen2Config()
|
121 |
+
|
122 |
+
>>> # Initializing a model from the RWKV6Qwen2-7B style configuration
|
123 |
+
>>> model = RWKV6Qwen2Model(configuration)
|
124 |
+
|
125 |
+
>>> # Accessing the model configuration
|
126 |
+
>>> configuration = model.config
|
127 |
+
```"""
|
128 |
+
|
129 |
+
model_type = "rwkv6qwen2"
|
130 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
vocab_size=151936,
|
135 |
+
hidden_size=4096,
|
136 |
+
intermediate_size=22016,
|
137 |
+
num_hidden_layers=32,
|
138 |
+
num_attention_heads=32,
|
139 |
+
num_key_value_heads=32,
|
140 |
+
hidden_act="silu",
|
141 |
+
max_position_embeddings=32768,
|
142 |
+
initializer_range=0.02,
|
143 |
+
rms_norm_eps=1e-6,
|
144 |
+
use_cache=True,
|
145 |
+
tie_word_embeddings=False,
|
146 |
+
rope_theta=10000.0,
|
147 |
+
rope_scaling=None,
|
148 |
+
use_sliding_window=False,
|
149 |
+
sliding_window=4096,
|
150 |
+
max_window_layers=28,
|
151 |
+
attention_dropout=0.0,
|
152 |
+
attention_bias=True,
|
153 |
+
attention_output_bias=False,
|
154 |
+
**kwargs,
|
155 |
+
):
|
156 |
+
self.vocab_size = vocab_size
|
157 |
+
self.max_position_embeddings = max_position_embeddings
|
158 |
+
self.hidden_size = hidden_size
|
159 |
+
self.intermediate_size = intermediate_size
|
160 |
+
self.num_hidden_layers = num_hidden_layers
|
161 |
+
self.num_attention_heads = num_attention_heads
|
162 |
+
self.use_sliding_window = use_sliding_window
|
163 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
164 |
+
self.max_window_layers = max_window_layers
|
165 |
+
|
166 |
+
# for backward compatibility
|
167 |
+
if num_key_value_heads is None:
|
168 |
+
num_key_value_heads = num_attention_heads
|
169 |
+
|
170 |
+
self.num_key_value_heads = num_key_value_heads
|
171 |
+
self.hidden_act = hidden_act
|
172 |
+
self.initializer_range = initializer_range
|
173 |
+
self.rms_norm_eps = rms_norm_eps
|
174 |
+
self.use_cache = use_cache
|
175 |
+
self.rope_theta = rope_theta
|
176 |
+
self.rope_scaling = rope_scaling
|
177 |
+
self.attention_dropout = attention_dropout
|
178 |
+
# Validate the correctness of rotary position embeddings parameters
|
179 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
180 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
181 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
182 |
+
rope_config_validation(self)
|
183 |
+
|
184 |
+
self.attention_bias = attention_bias
|
185 |
+
self.attention_output_bias = attention_output_bias
|
186 |
+
|
187 |
+
super().__init__(
|
188 |
+
tie_word_embeddings=tie_word_embeddings,
|
189 |
+
**kwargs,
|
190 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": false,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.37.0"
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:784226ec38b2dd922ce299639cd906281c5c54b18a05e4ba228f5d6dbb42044f
|
3 |
+
size 4855322904
|
model-00002-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:933740ed409407d0a51b67b94e362fb55cd05a6c44e177010f79740ae4429bb5
|
3 |
+
size 4996984768
|
model-00003-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ae21cfac742f31693943a6f22b7c18cdb173b3f83cec676036029b56739e182
|
3 |
+
size 4901245384
|
model-00004-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ea647514103e956e4a84b30afa3841cda91aa1d3a2e888339e0739b44ddb2a0
|
3 |
+
size 4901328272
|
model-00005-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccd38aa2e69793247a3a0f9a5acb8c5bfe75eb54d126a64b74b70bcfd7a7b529
|
3 |
+
size 4901328272
|
model-00006-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18ee5ebffb61b5ab2271f82106f9573421f97eb1be35c611ec346edcd7658639
|
3 |
+
size 4996984872
|
model-00007-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0194ddfec05b749fca67fef7cffd6516d7412c49e45f35945b5b0edfed53748
|
3 |
+
size 4901245432
|
model-00008-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4334138e184e3da4ca88ae3274dd616c0ec6b63c3e2f8eff819ecbafe8bc81eb
|
3 |
+
size 4901328272
|
model-00009-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd29ff799632cf7273794d3a3c534125ccbd4c9c421be80ec297a92c7bbfd474
|
3 |
+
size 4901328272
|
model-00010-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b197641079cb129e7077ab8530f6198251f009894e49cda620bb412ed58a518c
|
3 |
+
size 4996984872
|
model-00011-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c17a96a65c37ddf84c6fa2b896c76b74416299000d7ab151e0d4c9b07a506e1
|
3 |
+
size 4901245432
|
model-00012-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caa777bc0d289df627e3c0ad95795ec6004e360946e732ec8a341d60676ae49b
|
3 |
+
size 4901328272
|
model-00013-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e891a08c861a73b013e1f63a3585f316bf9033b170ba8cbbedac10dd3f70b5a6
|
3 |
+
size 4901328272
|
model-00014-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2609ba094e444e816aae49003286e1663e8f71af68493a15d05da3871bab40b
|
3 |
+
size 3960044304
|
model-00015-of-00015.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d161d064051518345b80bbfb83f2e000525faf2d815fb7c93ec03ad2cdbd3f87
|
3 |
+
size 1557135488
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_rwkv6qwen2.py
ADDED
@@ -0,0 +1,1210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""PyTorch RWKV6Qwen2 model."""
|
21 |
+
|
22 |
+
import math
|
23 |
+
import inspect
|
24 |
+
from typing import List, Optional, Tuple, Union, Dict, Any
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
import torch.nn.functional as F
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.cache_utils import Cache, StaticCache
|
33 |
+
from transformers.generation import GenerationMixin
|
34 |
+
from transformers.modeling_outputs import (
|
35 |
+
BaseModelOutputWithPast,
|
36 |
+
CausalLMOutputWithPast,
|
37 |
+
QuestionAnsweringModelOutput,
|
38 |
+
SequenceClassifierOutputWithPast,
|
39 |
+
TokenClassifierOutput,
|
40 |
+
)
|
41 |
+
from transformers.modeling_utils import PreTrainedModel
|
42 |
+
from transformers.utils import (
|
43 |
+
add_code_sample_docstrings,
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
is_flash_attn_2_available,
|
47 |
+
is_flash_attn_greater_or_equal_2_10,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from .configuration_rwkv6qwen2 import RWKV6Qwen2Config
|
52 |
+
|
53 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer, Qwen2MLP, Qwen2RMSNorm, repeat_kv
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
|
58 |
+
_CHECKPOINT_FOR_DOC = "RWKV/RWKV6Qwen2-7B"
|
59 |
+
_CONFIG_FOR_DOC = "RWKV6Qwen2Config"
|
60 |
+
|
61 |
+
class RWKV6State(Cache):
|
62 |
+
def __init__(self) -> None:
|
63 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
64 |
+
self.layer_kv_states: List[torch.Tensor] = []
|
65 |
+
self.layer_shift_states: List[torch.Tensor] = []
|
66 |
+
|
67 |
+
def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
68 |
+
"""
|
69 |
+
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
70 |
+
sequence length.
|
71 |
+
"""
|
72 |
+
if layer_idx < len(self):
|
73 |
+
return (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
|
74 |
+
else:
|
75 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
76 |
+
|
77 |
+
def __iter__(self):
|
78 |
+
"""
|
79 |
+
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
80 |
+
keys and values
|
81 |
+
"""
|
82 |
+
for layer_idx in range(len(self)):
|
83 |
+
yield (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
|
84 |
+
|
85 |
+
def __len__(self):
|
86 |
+
"""
|
87 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
88 |
+
to the number of layers in the model.
|
89 |
+
"""
|
90 |
+
return len(self.layer_kv_states)
|
91 |
+
|
92 |
+
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
93 |
+
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
94 |
+
# Linear Attention variants do not have a maximum length
|
95 |
+
return new_seq_length
|
96 |
+
|
97 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
98 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
99 |
+
raise NotImplementedError('Cannot reorder Linear Attention state')
|
100 |
+
|
101 |
+
def get_seq_length(self, layer_idx: int = 0) -> int:
|
102 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
103 |
+
return self._seen_tokens
|
104 |
+
|
105 |
+
def get_max_cache_shape(self) -> Optional[int]:
|
106 |
+
"""Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
|
107 |
+
return None
|
108 |
+
|
109 |
+
def get_max_length(self) -> Optional[int]:
|
110 |
+
"""
|
111 |
+
Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length.
|
112 |
+
"""
|
113 |
+
return None
|
114 |
+
|
115 |
+
# def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
116 |
+
# """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
|
117 |
+
# backward compatibility."""
|
118 |
+
# legacy_cache = ()
|
119 |
+
# for layer_idx in range(len(self)):
|
120 |
+
# legacy_cache += ((self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]),)
|
121 |
+
# return legacy_cache
|
122 |
+
|
123 |
+
# @classmethod
|
124 |
+
# #@deprecate_kwarg("num_hidden_layers", version="4.47.0")
|
125 |
+
# def from_legacy_cache(
|
126 |
+
# cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor, torch.FloatTensor]]] = None, num_hidden_layers: int | None = None
|
127 |
+
# ) -> "RWKV6State":
|
128 |
+
# """Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
|
129 |
+
# backward compatibility."""
|
130 |
+
# cache = cls()
|
131 |
+
# if past_key_values is not None:
|
132 |
+
# for layer_idx in range(len(past_key_values)):
|
133 |
+
# layer_kv_state, layer_shift_state = past_key_values[layer_idx]
|
134 |
+
# cache.update(layer_kv_state, layer_shift_state, layer_idx)
|
135 |
+
# return cache
|
136 |
+
|
137 |
+
def crop(self, max_length: int):
|
138 |
+
# can't implement this for linear attention variants
|
139 |
+
return
|
140 |
+
|
141 |
+
@torch.no_grad
|
142 |
+
def update(
|
143 |
+
self,
|
144 |
+
kv_state: torch.Tensor,
|
145 |
+
shift_state: torch.Tensor,
|
146 |
+
token_count: int,
|
147 |
+
layer_idx: int,
|
148 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
149 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
150 |
+
# Update the number of seen tokens
|
151 |
+
if layer_idx == 0:
|
152 |
+
self._seen_tokens += token_count
|
153 |
+
|
154 |
+
# Update the cache
|
155 |
+
# There may be skipped layers, fill them with empty lists
|
156 |
+
for _ in range(len(self.layer_kv_states), layer_idx + 1):
|
157 |
+
self.layer_kv_states.append(torch.zeros_like(kv_state).requires_grad_(False))
|
158 |
+
self.layer_shift_states.append(torch.zeros_like(shift_state).requires_grad_(False))
|
159 |
+
self.layer_kv_states[layer_idx].copy_(kv_state)
|
160 |
+
self.layer_shift_states[layer_idx].copy_(shift_state)
|
161 |
+
|
162 |
+
return self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]
|
163 |
+
|
164 |
+
# @deprecate_kwarg("num_hidden_layers", version="4.47.0")
|
165 |
+
# def batch_split(
|
166 |
+
# self, full_batch_size: int, split_size: int, num_hidden_layers: int = None
|
167 |
+
# ) -> List["DynamicCache"]:
|
168 |
+
# """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
|
169 |
+
# `_split_model_inputs()` in `generation.utils`"""
|
170 |
+
# out = []
|
171 |
+
# for i in range(0, full_batch_size, split_size):
|
172 |
+
# current_split = DynamicCache()
|
173 |
+
# current_split._seen_tokens = self._seen_tokens
|
174 |
+
# current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
|
175 |
+
# current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
|
176 |
+
# out.append(current_split)
|
177 |
+
# return out
|
178 |
+
|
179 |
+
# @classmethod
|
180 |
+
# @deprecate_kwarg("num_hidden_layers", version="4.47.0")
|
181 |
+
# def from_batch_splits(cls, splits: List["DynamicCache"], num_hidden_layers: int = None) -> "DynamicCache":
|
182 |
+
# """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
|
183 |
+
# `generation.utils`"""
|
184 |
+
# cache = cls()
|
185 |
+
# for idx in range(len(splits[0])):
|
186 |
+
# key_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
|
187 |
+
# value_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
|
188 |
+
# if key_cache != []:
|
189 |
+
# layer_keys = torch.cat(key_cache, dim=0)
|
190 |
+
# layer_values = torch.cat(value_cache, dim=0)
|
191 |
+
# cache.update(layer_keys, layer_values, idx)
|
192 |
+
# return cache
|
193 |
+
|
194 |
+
# def batch_repeat_interleave(self, repeats: int):
|
195 |
+
# """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
|
196 |
+
# for layer_idx in range(len(self)):
|
197 |
+
# self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
|
198 |
+
# self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)
|
199 |
+
|
200 |
+
# def batch_select_indices(self, indices: torch.Tensor):
|
201 |
+
# """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
|
202 |
+
# for layer_idx in range(len(self)):
|
203 |
+
# self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
|
204 |
+
# self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]
|
205 |
+
|
206 |
+
from fla.ops.gla.chunk import chunk_gla
|
207 |
+
|
208 |
+
class RWKV6Attention(nn.Module):
|
209 |
+
def __init__(self, config, layer_idx: Optional[int] = None):
|
210 |
+
super().__init__()
|
211 |
+
self.config = config
|
212 |
+
self.layer_idx = layer_idx
|
213 |
+
if layer_idx is None:
|
214 |
+
logger.warning_once(
|
215 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
216 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
217 |
+
"when creating this class."
|
218 |
+
)
|
219 |
+
|
220 |
+
self.hidden_size = config.hidden_size
|
221 |
+
self.num_heads = config.num_attention_heads
|
222 |
+
self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
|
223 |
+
self.num_key_value_heads = config.num_key_value_heads
|
224 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
225 |
+
self.is_causal = True
|
226 |
+
self.attention_dropout = config.attention_dropout
|
227 |
+
|
228 |
+
if self.hidden_size % self.num_heads != 0:
|
229 |
+
raise ValueError(
|
230 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
231 |
+
f" and `num_heads`: {self.num_heads})."
|
232 |
+
)
|
233 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
234 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
235 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
236 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=getattr(config, 'attention_output_bias', config.attention_bias))
|
237 |
+
|
238 |
+
self.gate = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
239 |
+
nn.init.zeros_(self.gate.weight)
|
240 |
+
|
241 |
+
n_layer = self.config.num_hidden_layers
|
242 |
+
n_embd = self.hidden_size
|
243 |
+
dim_att = self.num_heads * self.head_dim
|
244 |
+
layer_id = self.layer_idx
|
245 |
+
|
246 |
+
with torch.no_grad():
|
247 |
+
ratio_0_to_1 = layer_id / (n_layer - 1) # 0 to 1
|
248 |
+
ratio_1_to_almost0 = 1.0 - (layer_id / n_layer) # 1 to ~0
|
249 |
+
ddd = torch.ones(1, 1, n_embd)
|
250 |
+
for i in range(n_embd):
|
251 |
+
ddd[0, 0, i] = i / n_embd
|
252 |
+
|
253 |
+
ddd = torch.zeros(1, 1, n_embd)
|
254 |
+
self.time_maa_x = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
255 |
+
self.time_maa_r = nn.Parameter(torch.zeros_like(ddd))
|
256 |
+
self.time_maa_k = nn.Parameter(torch.zeros_like(ddd))
|
257 |
+
self.time_maa_v = nn.Parameter(torch.zeros_like(ddd))
|
258 |
+
self.time_maa_w = nn.Parameter(torch.zeros_like(ddd))
|
259 |
+
self.time_maa_g = nn.Parameter(torch.zeros_like(ddd))
|
260 |
+
|
261 |
+
D_MIX_LORA = 32 if n_embd < 4096 else 64
|
262 |
+
self.time_maa_w2 = nn.Parameter(torch.zeros(5, D_MIX_LORA, n_embd).uniform_(-0.01, 0.01))
|
263 |
+
self.time_maa_w1 = nn.Parameter(torch.zeros(n_embd, D_MIX_LORA*self.time_maa_w2.size(0)))
|
264 |
+
|
265 |
+
# RWKV-6
|
266 |
+
decay_speed = torch.ones(dim_att)
|
267 |
+
for n in range(dim_att):
|
268 |
+
decay_speed[n] = -6 + 5 * (n / (dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
269 |
+
self.time_decay = nn.Parameter(decay_speed.reshape(1,1,dim_att))
|
270 |
+
D_DECAY_LORA = 64 if n_embd < 4096 else 128
|
271 |
+
self.time_decay_w1 = nn.Parameter(torch.zeros(n_embd, D_DECAY_LORA))
|
272 |
+
self.time_decay_w2 = nn.Parameter(torch.zeros(D_DECAY_LORA, dim_att).uniform_(-0.01, 0.01))
|
273 |
+
|
274 |
+
def forward(
|
275 |
+
self,
|
276 |
+
hidden_states: torch.Tensor,
|
277 |
+
attention_mask: Optional[torch.Tensor] = None,
|
278 |
+
position_ids: Optional[torch.LongTensor] = None,
|
279 |
+
past_key_value: Optional[RWKV6State] = None,
|
280 |
+
output_attentions: bool = False,
|
281 |
+
use_cache: bool = False,
|
282 |
+
cache_position: Optional[torch.LongTensor] = None,
|
283 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
284 |
+
):
|
285 |
+
output_shift_state = hidden_states[:, -1:].detach().clone()
|
286 |
+
|
287 |
+
bsz, q_len, hidden_dim = hidden_states.size()
|
288 |
+
H = self.num_heads
|
289 |
+
|
290 |
+
x = hidden_states
|
291 |
+
|
292 |
+
if use_cache and past_key_value is not None and len(past_key_value) > self.layer_idx:
|
293 |
+
input_kv_state, input_shift_state = past_key_value[self.layer_idx]
|
294 |
+
xprev = torch.cat([input_shift_state, x[:, :-1]], dim=1)
|
295 |
+
else:
|
296 |
+
input_kv_state = None
|
297 |
+
xprev = F.pad(x, (0, 0, 1, -1))
|
298 |
+
|
299 |
+
dxprev = xprev - x
|
300 |
+
|
301 |
+
xxx = x + dxprev * self.time_maa_x
|
302 |
+
xxx = torch.tanh(xxx @ self.time_maa_w1).view(bsz*q_len, self.time_maa_w2.size(0), -1).transpose(0, 1)
|
303 |
+
xxx = torch.bmm(xxx, self.time_maa_w2).view(self.time_maa_w2.size(0), bsz, q_len, hidden_dim)
|
304 |
+
|
305 |
+
mr, mk, mv, mw, mg = xxx.unbind(dim=0)
|
306 |
+
xr = x + dxprev * (self.time_maa_r + mr)
|
307 |
+
xk = x + dxprev * (self.time_maa_k + mk)
|
308 |
+
xv = x + dxprev * (self.time_maa_v + mv)
|
309 |
+
xw = x + dxprev * (self.time_maa_w + mw)
|
310 |
+
xg = x + dxprev * (self.time_maa_g + mg)
|
311 |
+
|
312 |
+
query_states = self.q_proj(xr)
|
313 |
+
key_states = self.k_proj(xk)
|
314 |
+
value_states = self.v_proj(xv)
|
315 |
+
decay_states = (self.time_decay + torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2).to(query_states.dtype)
|
316 |
+
gate_states = F.sigmoid(self.gate(xg))
|
317 |
+
|
318 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
319 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
320 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
321 |
+
decay_states = decay_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
322 |
+
|
323 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
324 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
325 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
326 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
327 |
+
|
328 |
+
decay_states_log = -decay_states.float().exp()
|
329 |
+
#decay_states_log = decay_states_log.clamp(-5) # FIXME - is this necessary?
|
330 |
+
key_states = (key_states * (1 - decay_states_log.exp())).to(key_states.dtype)
|
331 |
+
|
332 |
+
query_states = query_states.to(value_states.dtype)
|
333 |
+
key_states = key_states.to(value_states.dtype)
|
334 |
+
|
335 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
336 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
337 |
+
# cast them back in float16 just to be sure everything works as expected.
|
338 |
+
input_dtype = query_states.dtype
|
339 |
+
if input_dtype == torch.float32:
|
340 |
+
if torch.is_autocast_enabled():
|
341 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
342 |
+
# Handle the case where the model is quantized
|
343 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
344 |
+
target_dtype = self.config._pre_quantization_dtype
|
345 |
+
else:
|
346 |
+
target_dtype = self.q_proj.weight.dtype
|
347 |
+
|
348 |
+
logger.warning_once(
|
349 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
350 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
351 |
+
f" {target_dtype}."
|
352 |
+
)
|
353 |
+
|
354 |
+
query_states = query_states.to(target_dtype)
|
355 |
+
key_states = key_states.to(target_dtype)
|
356 |
+
value_states = value_states.to(target_dtype)
|
357 |
+
|
358 |
+
attn_weights = torch.empty(0, device=x.device)
|
359 |
+
|
360 |
+
scale = query_states.shape[-1] ** -0.5
|
361 |
+
output_final_state = not self.training and use_cache and past_key_value is not None
|
362 |
+
#attn_output, output_kv_state = ChunkGLAFunction.apply(query_states, key_states, value_states, decay_states_log.float(), scale, input_kv_state, output_final_state)
|
363 |
+
attn_output, output_kv_state = chunk_gla(query_states, key_states, value_states, decay_states_log, scale, input_kv_state, output_final_state)
|
364 |
+
#attn_output, output_kv_state = fused_recurrent_gla(query_states, key_states, value_states, decay_states_log, input_kv_state, output_final_state)
|
365 |
+
|
366 |
+
if output_final_state:
|
367 |
+
past_key_value.update(output_kv_state, output_shift_state, q_len, self.layer_idx)
|
368 |
+
|
369 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
370 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
371 |
+
attn_output = self.o_proj(attn_output * gate_states)
|
372 |
+
|
373 |
+
return attn_output, attn_weights, past_key_value
|
374 |
+
|
375 |
+
class RWKV6Qwen2DecoderLayer(Qwen2DecoderLayer):
|
376 |
+
def __init__(self, config: RWKV6Qwen2Config, layer_idx: int):
|
377 |
+
nn.Module.__init__(self)
|
378 |
+
self.hidden_size = config.hidden_size
|
379 |
+
|
380 |
+
self.self_attn = RWKV6Attention(config, layer_idx) #QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
381 |
+
|
382 |
+
self.mlp = Qwen2MLP(config)
|
383 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
384 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
385 |
+
|
386 |
+
RWKV6QWEN2_START_DOCSTRING = r"""
|
387 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
388 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
389 |
+
etc.)
|
390 |
+
|
391 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
392 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
393 |
+
and behavior.
|
394 |
+
|
395 |
+
Parameters:
|
396 |
+
config ([`RWKV6Qwen2Config`]):
|
397 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
398 |
+
load the weights associated with the model, only the configuration. Check out the
|
399 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
400 |
+
"""
|
401 |
+
|
402 |
+
|
403 |
+
@add_start_docstrings(
|
404 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
405 |
+
RWKV6QWEN2_START_DOCSTRING,
|
406 |
+
)
|
407 |
+
class RWKV6Qwen2PreTrainedModel(PreTrainedModel):
|
408 |
+
config_class = RWKV6Qwen2Config
|
409 |
+
base_model_prefix = "model"
|
410 |
+
supports_gradient_checkpointing = True
|
411 |
+
_no_split_modules = ["RWKV6Qwen2DecoderLayer"]
|
412 |
+
_skip_keys_device_placement = "past_key_values"
|
413 |
+
_supports_flash_attn_2 = True
|
414 |
+
_supports_sdpa = True
|
415 |
+
_supports_cache_class = True
|
416 |
+
_supports_quantized_cache = True
|
417 |
+
_supports_static_cache = True
|
418 |
+
|
419 |
+
def _init_weights(self, module):
|
420 |
+
std = self.config.initializer_range
|
421 |
+
if isinstance(module, nn.Linear):
|
422 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
423 |
+
if module.bias is not None:
|
424 |
+
module.bias.data.zero_()
|
425 |
+
elif isinstance(module, nn.Embedding):
|
426 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
427 |
+
if module.padding_idx is not None:
|
428 |
+
module.weight.data[module.padding_idx].zero_()
|
429 |
+
|
430 |
+
|
431 |
+
RWKV6QWEN2_INPUTS_DOCSTRING = r"""
|
432 |
+
Args:
|
433 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
434 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
435 |
+
it.
|
436 |
+
|
437 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
438 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
439 |
+
|
440 |
+
[What are input IDs?](../glossary#input-ids)
|
441 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
442 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
443 |
+
|
444 |
+
- 1 for tokens that are **not masked**,
|
445 |
+
- 0 for tokens that are **masked**.
|
446 |
+
|
447 |
+
[What are attention masks?](../glossary#attention-mask)
|
448 |
+
|
449 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
450 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
451 |
+
|
452 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
453 |
+
`past_key_values`).
|
454 |
+
|
455 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
456 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
457 |
+
information on the default strategy.
|
458 |
+
|
459 |
+
- 1 indicates the head is **not masked**,
|
460 |
+
- 0 indicates the head is **masked**.
|
461 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
462 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
463 |
+
config.n_positions - 1]`.
|
464 |
+
|
465 |
+
[What are position IDs?](../glossary#position-ids)
|
466 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
467 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
468 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
469 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
470 |
+
|
471 |
+
Two formats are allowed:
|
472 |
+
- a [`~cache_utils.Cache`] instance, see our
|
473 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
474 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
475 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
476 |
+
cache format.
|
477 |
+
|
478 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
479 |
+
legacy cache format will be returned.
|
480 |
+
|
481 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
482 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
483 |
+
of shape `(batch_size, sequence_length)`.
|
484 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
485 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
486 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
487 |
+
model's internal embedding lookup matrix.
|
488 |
+
use_cache (`bool`, *optional*):
|
489 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
490 |
+
`past_key_values`).
|
491 |
+
output_attentions (`bool`, *optional*):
|
492 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
493 |
+
tensors for more detail.
|
494 |
+
output_hidden_states (`bool`, *optional*):
|
495 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
496 |
+
more detail.
|
497 |
+
return_dict (`bool`, *optional*):
|
498 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
499 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
500 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
501 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
502 |
+
the complete sequence length.
|
503 |
+
"""
|
504 |
+
|
505 |
+
@add_start_docstrings(
|
506 |
+
"The bare RWKV6Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
507 |
+
RWKV6QWEN2_START_DOCSTRING,
|
508 |
+
)
|
509 |
+
class RWKV6Qwen2Model(RWKV6Qwen2PreTrainedModel):
|
510 |
+
"""
|
511 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
512 |
+
|
513 |
+
Args:
|
514 |
+
config: RWKV6Qwen2Config
|
515 |
+
"""
|
516 |
+
|
517 |
+
def __init__(self, config: RWKV6Qwen2Config):
|
518 |
+
super().__init__(config)
|
519 |
+
self.padding_idx = config.pad_token_id
|
520 |
+
self.vocab_size = config.vocab_size
|
521 |
+
|
522 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
523 |
+
self.layers = nn.ModuleList(
|
524 |
+
[RWKV6Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
525 |
+
)
|
526 |
+
self._attn_implementation = config._attn_implementation
|
527 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
528 |
+
#self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
529 |
+
|
530 |
+
self.gradient_checkpointing = False
|
531 |
+
# Initialize weights and apply final processing
|
532 |
+
self.post_init()
|
533 |
+
|
534 |
+
def get_input_embeddings(self):
|
535 |
+
return self.embed_tokens
|
536 |
+
|
537 |
+
def set_input_embeddings(self, value):
|
538 |
+
self.embed_tokens = value
|
539 |
+
|
540 |
+
@add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
|
541 |
+
def forward(
|
542 |
+
self,
|
543 |
+
input_ids: torch.LongTensor = None,
|
544 |
+
attention_mask: Optional[torch.Tensor] = None,
|
545 |
+
position_ids: Optional[torch.LongTensor] = None,
|
546 |
+
past_key_values: Optional[Cache] = None,
|
547 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
548 |
+
use_cache: Optional[bool] = None,
|
549 |
+
output_attentions: Optional[bool] = None,
|
550 |
+
output_hidden_states: Optional[bool] = None,
|
551 |
+
return_dict: Optional[bool] = None,
|
552 |
+
cache_position: Optional[torch.LongTensor] = None,
|
553 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
554 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
555 |
+
output_hidden_states = (
|
556 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
557 |
+
)
|
558 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
559 |
+
|
560 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
561 |
+
|
562 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
563 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
564 |
+
|
565 |
+
if self.gradient_checkpointing and self.training:
|
566 |
+
if use_cache:
|
567 |
+
logger.warning_once(
|
568 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
569 |
+
)
|
570 |
+
use_cache = False
|
571 |
+
|
572 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
573 |
+
#return_legacy_cache = False
|
574 |
+
if use_cache and not isinstance(past_key_values, RWKV6State):
|
575 |
+
#return_legacy_cache = True
|
576 |
+
past_key_values = RWKV6State()
|
577 |
+
# if past_key_values is None:
|
578 |
+
# past_key_values = DynamicCache()
|
579 |
+
# else:
|
580 |
+
# past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
581 |
+
# logger.warning_once(
|
582 |
+
# "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
583 |
+
# "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
584 |
+
# "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
585 |
+
# )
|
586 |
+
|
587 |
+
if inputs_embeds is None:
|
588 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
589 |
+
|
590 |
+
# if cache_position is None:
|
591 |
+
# past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
592 |
+
# cache_position = torch.arange(
|
593 |
+
# past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
594 |
+
# )
|
595 |
+
# if position_ids is None:
|
596 |
+
# position_ids = cache_position.unsqueeze(0)
|
597 |
+
|
598 |
+
# causal_mask = self._update_causal_mask(
|
599 |
+
# attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
600 |
+
# )
|
601 |
+
|
602 |
+
causal_mask = None
|
603 |
+
|
604 |
+
hidden_states = inputs_embeds
|
605 |
+
|
606 |
+
# create position embeddings to be shared across the decoder layers
|
607 |
+
position_embeddings = None #self.rotary_emb(hidden_states, position_ids)
|
608 |
+
|
609 |
+
# decoder layers
|
610 |
+
all_hidden_states = () if output_hidden_states else None
|
611 |
+
all_self_attns = () if output_attentions else None
|
612 |
+
next_decoder_cache = None
|
613 |
+
|
614 |
+
for decoder_layer in self.layers:
|
615 |
+
if output_hidden_states:
|
616 |
+
all_hidden_states += (hidden_states,)
|
617 |
+
|
618 |
+
if self.gradient_checkpointing and self.training:
|
619 |
+
layer_outputs = self._gradient_checkpointing_func(
|
620 |
+
decoder_layer.__call__,
|
621 |
+
hidden_states,
|
622 |
+
causal_mask,
|
623 |
+
position_ids,
|
624 |
+
past_key_values,
|
625 |
+
output_attentions,
|
626 |
+
use_cache,
|
627 |
+
cache_position,
|
628 |
+
position_embeddings,
|
629 |
+
)
|
630 |
+
else:
|
631 |
+
layer_outputs = decoder_layer(
|
632 |
+
hidden_states,
|
633 |
+
attention_mask=causal_mask,
|
634 |
+
position_ids=position_ids,
|
635 |
+
past_key_value=past_key_values,
|
636 |
+
output_attentions=output_attentions,
|
637 |
+
use_cache=use_cache,
|
638 |
+
cache_position=cache_position,
|
639 |
+
position_embeddings=position_embeddings,
|
640 |
+
)
|
641 |
+
|
642 |
+
hidden_states = layer_outputs[0]
|
643 |
+
|
644 |
+
if use_cache:
|
645 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
646 |
+
|
647 |
+
if output_attentions:
|
648 |
+
all_self_attns += (layer_outputs[1],)
|
649 |
+
|
650 |
+
hidden_states = self.norm(hidden_states)
|
651 |
+
|
652 |
+
# add hidden states from the last decoder layer
|
653 |
+
if output_hidden_states:
|
654 |
+
all_hidden_states += (hidden_states,)
|
655 |
+
|
656 |
+
next_cache = next_decoder_cache if use_cache else None
|
657 |
+
#if return_legacy_cache:
|
658 |
+
# next_cache = next_cache.to_legacy_cache()
|
659 |
+
|
660 |
+
if not return_dict:
|
661 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
662 |
+
return BaseModelOutputWithPast(
|
663 |
+
last_hidden_state=hidden_states,
|
664 |
+
past_key_values=next_cache,
|
665 |
+
hidden_states=all_hidden_states,
|
666 |
+
attentions=all_self_attns,
|
667 |
+
)
|
668 |
+
|
669 |
+
class RWKV6Qwen2ForCausalLM(RWKV6Qwen2PreTrainedModel, GenerationMixin):
|
670 |
+
_tied_weights_keys = ["lm_head.weight"]
|
671 |
+
|
672 |
+
def __init__(self, config):
|
673 |
+
super().__init__(config)
|
674 |
+
self.model = RWKV6Qwen2Model(config)
|
675 |
+
self.vocab_size = config.vocab_size
|
676 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
677 |
+
|
678 |
+
# Initialize weights and apply final processing
|
679 |
+
self.post_init()
|
680 |
+
|
681 |
+
def get_input_embeddings(self):
|
682 |
+
return self.model.embed_tokens
|
683 |
+
|
684 |
+
def set_input_embeddings(self, value):
|
685 |
+
self.model.embed_tokens = value
|
686 |
+
|
687 |
+
def get_output_embeddings(self):
|
688 |
+
return self.lm_head
|
689 |
+
|
690 |
+
def set_output_embeddings(self, new_embeddings):
|
691 |
+
self.lm_head = new_embeddings
|
692 |
+
|
693 |
+
def set_decoder(self, decoder):
|
694 |
+
self.model = decoder
|
695 |
+
|
696 |
+
def get_decoder(self):
|
697 |
+
return self.model
|
698 |
+
|
699 |
+
@add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
|
700 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
701 |
+
def forward(
|
702 |
+
self,
|
703 |
+
input_ids: torch.LongTensor = None,
|
704 |
+
attention_mask: Optional[torch.Tensor] = None,
|
705 |
+
position_ids: Optional[torch.LongTensor] = None,
|
706 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
707 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
708 |
+
labels: Optional[torch.LongTensor] = None,
|
709 |
+
use_cache: Optional[bool] = None,
|
710 |
+
output_attentions: Optional[bool] = None,
|
711 |
+
output_hidden_states: Optional[bool] = None,
|
712 |
+
return_dict: Optional[bool] = None,
|
713 |
+
cache_position: Optional[torch.LongTensor] = None,
|
714 |
+
num_logits_to_keep: int = 0,
|
715 |
+
**loss_kwargs,
|
716 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
717 |
+
r"""
|
718 |
+
Args:
|
719 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
720 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
721 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
722 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
723 |
+
|
724 |
+
num_logits_to_keep (`int`, *optional*):
|
725 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
726 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
727 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
728 |
+
|
729 |
+
Returns:
|
730 |
+
|
731 |
+
Example:
|
732 |
+
|
733 |
+
```python
|
734 |
+
>>> from transformers import AutoTokenizer, RWKV6Qwen2ForCausalLM
|
735 |
+
|
736 |
+
>>> model = RWKV6Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
737 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
738 |
+
|
739 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
740 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
741 |
+
|
742 |
+
>>> # Generate
|
743 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
744 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
745 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
746 |
+
```"""
|
747 |
+
|
748 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
749 |
+
output_hidden_states = (
|
750 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
751 |
+
)
|
752 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
753 |
+
|
754 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
755 |
+
outputs = self.model(
|
756 |
+
input_ids=input_ids,
|
757 |
+
attention_mask=attention_mask,
|
758 |
+
position_ids=position_ids,
|
759 |
+
past_key_values=past_key_values,
|
760 |
+
inputs_embeds=inputs_embeds,
|
761 |
+
use_cache=use_cache,
|
762 |
+
output_attentions=output_attentions,
|
763 |
+
output_hidden_states=output_hidden_states,
|
764 |
+
return_dict=return_dict,
|
765 |
+
cache_position=cache_position,
|
766 |
+
)
|
767 |
+
|
768 |
+
hidden_states = outputs[0]
|
769 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
770 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
771 |
+
|
772 |
+
loss = None
|
773 |
+
if labels is not None:
|
774 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
775 |
+
|
776 |
+
if not return_dict:
|
777 |
+
output = (logits,) + outputs[1:]
|
778 |
+
return (loss,) + output if loss is not None else output
|
779 |
+
|
780 |
+
return CausalLMOutputWithPast(
|
781 |
+
loss=loss,
|
782 |
+
logits=logits,
|
783 |
+
past_key_values=outputs.past_key_values,
|
784 |
+
hidden_states=outputs.hidden_states,
|
785 |
+
attentions=outputs.attentions,
|
786 |
+
)
|
787 |
+
|
788 |
+
def prepare_inputs_for_generation(
|
789 |
+
self,
|
790 |
+
input_ids: torch.LongTensor,
|
791 |
+
past_key_values: Optional[Cache] = None,
|
792 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
793 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
794 |
+
cache_position: Optional[torch.LongTensor] = None,
|
795 |
+
**kwargs,
|
796 |
+
):
|
797 |
+
"""
|
798 |
+
Prepare the model inputs for generation. In includes operations like computing the 4D attention mask or
|
799 |
+
slicing inputs given the existing cache.
|
800 |
+
|
801 |
+
See the forward pass in the model documentation for expected arguments (different models might have different
|
802 |
+
requirements for e.g. `past_key_values`). This function should work as is for most LLMs.
|
803 |
+
"""
|
804 |
+
|
805 |
+
# 1. Handle BC:
|
806 |
+
model_inputs = {}
|
807 |
+
# - some models don't have `Cache` support (which implies they don't expect `cache_position` in `forward`)
|
808 |
+
if self._supports_cache_class:
|
809 |
+
model_inputs["cache_position"] = cache_position
|
810 |
+
# - `cache_position` was not a mandatory input in `prepare_inputs_for_generation` for those models, and this
|
811 |
+
# function may be called outside of `generate`. Handle most use cases by creating `cache_position` on the fly
|
812 |
+
# (this alternative is not as robust as calling `generate` and letting it create `cache_position`)
|
813 |
+
elif cache_position is None:
|
814 |
+
past_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
815 |
+
cache_position = torch.arange(past_length, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
816 |
+
|
817 |
+
# 2. Generic cache-dependent input preparation
|
818 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
819 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
820 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
821 |
+
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case
|
822 |
+
if past_key_values is not None:
|
823 |
+
model_inputs["past_key_values"] = past_key_values
|
824 |
+
if inputs_embeds is not None or cache_position[-1] >= input_ids.shape[1]: # Exception 1 or Exception 3
|
825 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
826 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
827 |
+
input_ids = input_ids[:, cache_position]
|
828 |
+
|
829 |
+
# 3. Prepare base model inputs
|
830 |
+
input_ids_key = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
831 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
832 |
+
if not self.config.is_encoder_decoder:
|
833 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
834 |
+
model_inputs[input_ids_key] = None
|
835 |
+
model_inputs["inputs_embeds"] = inputs_embeds
|
836 |
+
else:
|
837 |
+
# `clone` calls in this function ensure a consistent stride. See #32227
|
838 |
+
model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
|
839 |
+
model_inputs["inputs_embeds"] = None
|
840 |
+
else:
|
841 |
+
model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
|
842 |
+
|
843 |
+
# 4. Create missing `position_ids` on the fly
|
844 |
+
if (
|
845 |
+
attention_mask is not None
|
846 |
+
and kwargs.get("position_ids") is None
|
847 |
+
and "position_ids" in set(inspect.signature(self.forward).parameters.keys())
|
848 |
+
):
|
849 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
850 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
851 |
+
kwargs["position_ids"] = position_ids # placed in kwargs for further processing (see below)
|
852 |
+
|
853 |
+
# 5. Slice model inputs if it's an input that should have the same length as `input_ids`
|
854 |
+
for model_input_name in ["position_ids", "token_type_ids"]:
|
855 |
+
model_input = kwargs.get(model_input_name)
|
856 |
+
if model_input is not None:
|
857 |
+
if past_key_values:
|
858 |
+
model_input = model_input[:, -input_ids.shape[1] :]
|
859 |
+
model_input = model_input.clone(memory_format=torch.contiguous_format)
|
860 |
+
model_inputs[model_input_name] = model_input
|
861 |
+
|
862 |
+
# 6. Create 4D attention mask is we are using a `StaticCache` (important for performant compiled forward pass)
|
863 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
864 |
+
if model_inputs["inputs_embeds"] is not None:
|
865 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
866 |
+
device = model_inputs["inputs_embeds"].device
|
867 |
+
else:
|
868 |
+
batch_size, sequence_length = model_inputs[input_ids_key].shape
|
869 |
+
device = model_inputs[input_ids_key].device
|
870 |
+
|
871 |
+
# Create the causal mask with fixed shape in advance, to reduce recompilations. If the function to create
|
872 |
+
# the 4D causal mask exists, it should be present in the base model (XXXModel class).
|
873 |
+
base_model = getattr(self, self.base_model_prefix, None)
|
874 |
+
if base_model is None:
|
875 |
+
causal_mask_creation_function = getattr(
|
876 |
+
self, "_prepare_4d_causal_attention_mask_with_cache_position", None
|
877 |
+
)
|
878 |
+
else:
|
879 |
+
causal_mask_creation_function = getattr(
|
880 |
+
base_model, "_prepare_4d_causal_attention_mask_with_cache_position", None
|
881 |
+
)
|
882 |
+
if causal_mask_creation_function is None:
|
883 |
+
logger.warning_once(
|
884 |
+
f"{self.__class__.__name__} has no `_prepare_4d_causal_attention_mask_with_cache_position` method "
|
885 |
+
"defined in its base modeling class. Compiled forward passes will be sub-optimal. If you're "
|
886 |
+
"writing code, see Llama for an example implementation. If you're a user, please report this "
|
887 |
+
"issue on GitHub."
|
888 |
+
)
|
889 |
+
else:
|
890 |
+
attention_mask = causal_mask_creation_function(
|
891 |
+
attention_mask,
|
892 |
+
sequence_length=sequence_length,
|
893 |
+
target_length=past_key_values.get_max_cache_shape(),
|
894 |
+
dtype=self.dtype,
|
895 |
+
device=device,
|
896 |
+
cache_position=cache_position,
|
897 |
+
batch_size=batch_size,
|
898 |
+
config=self.config,
|
899 |
+
past_key_values=past_key_values,
|
900 |
+
)
|
901 |
+
if attention_mask is not None:
|
902 |
+
model_inputs["attention_mask"] = attention_mask
|
903 |
+
|
904 |
+
# 7. Forward ALL kwargs that are uninitialized (e.g. `use_cache`).
|
905 |
+
for key, value in kwargs.items():
|
906 |
+
if key not in model_inputs:
|
907 |
+
model_inputs[key] = value
|
908 |
+
|
909 |
+
# 8. Remove unexpected `generate` inputs (TODO @joao: fix trainer and examples)
|
910 |
+
model_inputs.pop("labels", None)
|
911 |
+
return model_inputs
|
912 |
+
|
913 |
+
@add_start_docstrings(
|
914 |
+
"""
|
915 |
+
The RWKV6Qwen2 Model transformer with a sequence classification head on top (linear layer).
|
916 |
+
|
917 |
+
[`RWKV6Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
918 |
+
(e.g. GPT-2) do.
|
919 |
+
|
920 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
921 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
922 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
923 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
924 |
+
each row of the batch).
|
925 |
+
""",
|
926 |
+
RWKV6QWEN2_START_DOCSTRING,
|
927 |
+
)
|
928 |
+
class RWKV6Qwen2ForSequenceClassification(RWKV6Qwen2PreTrainedModel):
|
929 |
+
def __init__(self, config):
|
930 |
+
super().__init__(config)
|
931 |
+
self.num_labels = config.num_labels
|
932 |
+
self.model = RWKV6Qwen2Model(config)
|
933 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
934 |
+
|
935 |
+
# Initialize weights and apply final processing
|
936 |
+
self.post_init()
|
937 |
+
|
938 |
+
def get_input_embeddings(self):
|
939 |
+
return self.model.embed_tokens
|
940 |
+
|
941 |
+
def set_input_embeddings(self, value):
|
942 |
+
self.model.embed_tokens = value
|
943 |
+
|
944 |
+
@add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
|
945 |
+
def forward(
|
946 |
+
self,
|
947 |
+
input_ids: torch.LongTensor = None,
|
948 |
+
attention_mask: Optional[torch.Tensor] = None,
|
949 |
+
position_ids: Optional[torch.LongTensor] = None,
|
950 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
951 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
952 |
+
labels: Optional[torch.LongTensor] = None,
|
953 |
+
use_cache: Optional[bool] = None,
|
954 |
+
output_attentions: Optional[bool] = None,
|
955 |
+
output_hidden_states: Optional[bool] = None,
|
956 |
+
return_dict: Optional[bool] = None,
|
957 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
958 |
+
r"""
|
959 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
960 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
961 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
962 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
963 |
+
"""
|
964 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
965 |
+
|
966 |
+
transformer_outputs = self.model(
|
967 |
+
input_ids,
|
968 |
+
attention_mask=attention_mask,
|
969 |
+
position_ids=position_ids,
|
970 |
+
past_key_values=past_key_values,
|
971 |
+
inputs_embeds=inputs_embeds,
|
972 |
+
use_cache=use_cache,
|
973 |
+
output_attentions=output_attentions,
|
974 |
+
output_hidden_states=output_hidden_states,
|
975 |
+
return_dict=return_dict,
|
976 |
+
)
|
977 |
+
hidden_states = transformer_outputs[0]
|
978 |
+
logits = self.score(hidden_states)
|
979 |
+
|
980 |
+
if input_ids is not None:
|
981 |
+
batch_size = input_ids.shape[0]
|
982 |
+
else:
|
983 |
+
batch_size = inputs_embeds.shape[0]
|
984 |
+
|
985 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
986 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
987 |
+
if self.config.pad_token_id is None:
|
988 |
+
sequence_lengths = -1
|
989 |
+
else:
|
990 |
+
if input_ids is not None:
|
991 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
992 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
993 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
994 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
995 |
+
else:
|
996 |
+
sequence_lengths = -1
|
997 |
+
|
998 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
999 |
+
|
1000 |
+
loss = None
|
1001 |
+
if labels is not None:
|
1002 |
+
labels = labels.to(logits.device)
|
1003 |
+
if self.config.problem_type is None:
|
1004 |
+
if self.num_labels == 1:
|
1005 |
+
self.config.problem_type = "regression"
|
1006 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1007 |
+
self.config.problem_type = "single_label_classification"
|
1008 |
+
else:
|
1009 |
+
self.config.problem_type = "multi_label_classification"
|
1010 |
+
|
1011 |
+
if self.config.problem_type == "regression":
|
1012 |
+
loss_fct = MSELoss()
|
1013 |
+
if self.num_labels == 1:
|
1014 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1015 |
+
else:
|
1016 |
+
loss = loss_fct(pooled_logits, labels)
|
1017 |
+
elif self.config.problem_type == "single_label_classification":
|
1018 |
+
loss_fct = CrossEntropyLoss()
|
1019 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1020 |
+
elif self.config.problem_type == "multi_label_classification":
|
1021 |
+
loss_fct = BCEWithLogitsLoss()
|
1022 |
+
loss = loss_fct(pooled_logits, labels)
|
1023 |
+
if not return_dict:
|
1024 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1025 |
+
return ((loss,) + output) if loss is not None else output
|
1026 |
+
|
1027 |
+
return SequenceClassifierOutputWithPast(
|
1028 |
+
loss=loss,
|
1029 |
+
logits=pooled_logits,
|
1030 |
+
past_key_values=transformer_outputs.past_key_values,
|
1031 |
+
hidden_states=transformer_outputs.hidden_states,
|
1032 |
+
attentions=transformer_outputs.attentions,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
|
1036 |
+
@add_start_docstrings(
|
1037 |
+
"""
|
1038 |
+
The RWKV6Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1039 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1040 |
+
""",
|
1041 |
+
RWKV6QWEN2_START_DOCSTRING,
|
1042 |
+
)
|
1043 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->RWKV6Qwen2, LLAMA->RWKV6QWEN2
|
1044 |
+
class RWKV6Qwen2ForTokenClassification(RWKV6Qwen2PreTrainedModel):
|
1045 |
+
def __init__(self, config):
|
1046 |
+
super().__init__(config)
|
1047 |
+
self.num_labels = config.num_labels
|
1048 |
+
self.model = RWKV6Qwen2Model(config)
|
1049 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1050 |
+
classifier_dropout = config.classifier_dropout
|
1051 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1052 |
+
classifier_dropout = config.hidden_dropout
|
1053 |
+
else:
|
1054 |
+
classifier_dropout = 0.1
|
1055 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1056 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1057 |
+
|
1058 |
+
# Initialize weights and apply final processing
|
1059 |
+
self.post_init()
|
1060 |
+
|
1061 |
+
def get_input_embeddings(self):
|
1062 |
+
return self.model.embed_tokens
|
1063 |
+
|
1064 |
+
def set_input_embeddings(self, value):
|
1065 |
+
self.model.embed_tokens = value
|
1066 |
+
|
1067 |
+
@add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
|
1068 |
+
@add_code_sample_docstrings(
|
1069 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1070 |
+
output_type=TokenClassifierOutput,
|
1071 |
+
config_class=_CONFIG_FOR_DOC,
|
1072 |
+
)
|
1073 |
+
def forward(
|
1074 |
+
self,
|
1075 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1076 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1077 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1078 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1079 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1080 |
+
labels: Optional[torch.LongTensor] = None,
|
1081 |
+
use_cache: Optional[bool] = None,
|
1082 |
+
output_attentions: Optional[bool] = None,
|
1083 |
+
output_hidden_states: Optional[bool] = None,
|
1084 |
+
return_dict: Optional[bool] = None,
|
1085 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1086 |
+
r"""
|
1087 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1088 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1089 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1090 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1091 |
+
"""
|
1092 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1093 |
+
|
1094 |
+
outputs = self.model(
|
1095 |
+
input_ids,
|
1096 |
+
attention_mask=attention_mask,
|
1097 |
+
position_ids=position_ids,
|
1098 |
+
past_key_values=past_key_values,
|
1099 |
+
inputs_embeds=inputs_embeds,
|
1100 |
+
use_cache=use_cache,
|
1101 |
+
output_attentions=output_attentions,
|
1102 |
+
output_hidden_states=output_hidden_states,
|
1103 |
+
return_dict=return_dict,
|
1104 |
+
)
|
1105 |
+
sequence_output = outputs[0]
|
1106 |
+
sequence_output = self.dropout(sequence_output)
|
1107 |
+
logits = self.score(sequence_output)
|
1108 |
+
|
1109 |
+
loss = None
|
1110 |
+
if labels is not None:
|
1111 |
+
loss = self.loss_function(logits, labels, self.config)
|
1112 |
+
|
1113 |
+
if not return_dict:
|
1114 |
+
output = (logits,) + outputs[2:]
|
1115 |
+
return ((loss,) + output) if loss is not None else output
|
1116 |
+
|
1117 |
+
return TokenClassifierOutput(
|
1118 |
+
loss=loss,
|
1119 |
+
logits=logits,
|
1120 |
+
hidden_states=outputs.hidden_states,
|
1121 |
+
attentions=outputs.attentions,
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
|
1125 |
+
@add_start_docstrings(
|
1126 |
+
"""
|
1127 |
+
The RWKV6Qwen2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
1128 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1129 |
+
""",
|
1130 |
+
RWKV6QWEN2_START_DOCSTRING,
|
1131 |
+
)
|
1132 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralForQuestionAnswering with Mistral->RWKV6Qwen2, MISTRAL->RWKV6QWEN2
|
1133 |
+
class RWKV6Qwen2ForQuestionAnswering(RWKV6Qwen2PreTrainedModel):
|
1134 |
+
base_model_prefix = "model"
|
1135 |
+
|
1136 |
+
# Copied from models.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->RWKV6Qwen2
|
1137 |
+
def __init__(self, config):
|
1138 |
+
super().__init__(config)
|
1139 |
+
self.model = RWKV6Qwen2Model(config)
|
1140 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1141 |
+
|
1142 |
+
# Initialize weights and apply final processing
|
1143 |
+
self.post_init()
|
1144 |
+
|
1145 |
+
def get_input_embeddings(self):
|
1146 |
+
return self.model.embed_tokens
|
1147 |
+
|
1148 |
+
def set_input_embeddings(self, value):
|
1149 |
+
self.model.embed_tokens = value
|
1150 |
+
|
1151 |
+
@add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
|
1152 |
+
def forward(
|
1153 |
+
self,
|
1154 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1155 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1156 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1157 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1158 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1159 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1160 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1161 |
+
output_attentions: Optional[bool] = None,
|
1162 |
+
output_hidden_states: Optional[bool] = None,
|
1163 |
+
return_dict: Optional[bool] = None,
|
1164 |
+
**kwargs,
|
1165 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1166 |
+
r"""
|
1167 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1168 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1169 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1170 |
+
are not taken into account for computing the loss.
|
1171 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1172 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1173 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1174 |
+
are not taken into account for computing the loss.
|
1175 |
+
"""
|
1176 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1177 |
+
|
1178 |
+
outputs = self.model(
|
1179 |
+
input_ids,
|
1180 |
+
attention_mask=attention_mask,
|
1181 |
+
position_ids=position_ids,
|
1182 |
+
past_key_values=past_key_values,
|
1183 |
+
inputs_embeds=inputs_embeds,
|
1184 |
+
output_attentions=output_attentions,
|
1185 |
+
output_hidden_states=output_hidden_states,
|
1186 |
+
return_dict=return_dict,
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
sequence_output = outputs[0]
|
1190 |
+
|
1191 |
+
logits = self.qa_outputs(sequence_output)
|
1192 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1193 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1194 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1195 |
+
|
1196 |
+
loss = None
|
1197 |
+
if start_positions is not None and end_positions is not None:
|
1198 |
+
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
1199 |
+
|
1200 |
+
if not return_dict:
|
1201 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1202 |
+
return ((loss,) + output) if loss is not None else output
|
1203 |
+
|
1204 |
+
return QuestionAnsweringModelOutput(
|
1205 |
+
loss=loss,
|
1206 |
+
start_logits=start_logits,
|
1207 |
+
end_logits=end_logits,
|
1208 |
+
hidden_states=outputs.hidden_states,
|
1209 |
+
attentions=outputs.attentions,
|
1210 |
+
)
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|