Upload Lunar Lander
Browse files- README.md +37 -0
- config.json +1 -0
- lunar-ppo-1m-steps.zip +3 -0
- lunar-ppo-1m-steps/_stable_baselines3_version +1 -0
- lunar-ppo-1m-steps/data +91 -0
- lunar-ppo-1m-steps/policy.optimizer.pth +3 -0
- lunar-ppo-1m-steps/policy.pth +3 -0
- lunar-ppo-1m-steps/pytorch_variables.pth +3 -0
- lunar-ppo-1m-steps/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 274.61 +/- 20.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f50f5219040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50f52190d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50f5219160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50f52191f0>", "_build": "<function ActorCriticPolicy._build at 0x7f50f5219280>", "forward": "<function ActorCriticPolicy.forward at 0x7f50f5219310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50f52193a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f50f5219430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50f52194c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50f5219550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50f52195e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f50f52144b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673206994328119291, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXtkFg+vmbUCUhpRSlIwBbJRL0YwBdJRHQKJok495hSd1fZQoaAZoCWgPQwjHvfkN09FyQJSGlFKUaBVL2WgWR0CiaPw66reZdX2UKGgGaAloD0MIceKrHUW7b0CUhpRSlGgVS/NoFkdAomkQqCpWFXV9lChoBmgJaA9DCP60UZ0Og3FAlIaUUpRoFUv2aBZHQKJqUOJ+Dvp1fZQoaAZoCWgPQwjMmII1jvtwQJSGlFKUaBVL52gWR0CialgDifg8dX2UKGgGaAloD0MICOi+nBk2cUCUhpRSlGgVS8ZoFkdAomrHhwVCX3V9lChoBmgJaA9DCMsPXOWJ+W5AlIaUUpRoFUvdaBZHQKJrHWjoIOZ1fZQoaAZoCWgPQwiVLCehdI5wQJSGlFKUaBVLzmgWR0Cia6TM7lq8dX2UKGgGaAloD0MIjBTKwlcpc0CUhpRSlGgVS9poFkdAomvo9q1w53V9lChoBmgJaA9DCOavkLmy4W1AlIaUUpRoFUvWaBZHQKJsObcXWOJ1fZQoaAZoCWgPQwgLnGwDt2lwQJSGlFKUaBVL6mgWR0CibE+uV5bAdX2UKGgGaAloD0MIiQrVzUU+ZkCUhpRSlGgVTegDaBZHQKJsgxnFo+R1fZQoaAZoCWgPQwg5tp4hHEtxQJSGlFKUaBVL9WgWR0CibPMTviLmdX2UKGgGaAloD0MI0XR2MvgscUCUhpRSlGgVS/9oFkdAom1PIlt0m3V9lChoBmgJaA9DCFrXaDmQUnFAlIaUUpRoFUv+aBZHQKJt7C2tuDV1fZQoaAZoCWgPQwhx5IHI4jhyQJSGlFKUaBVL+mgWR0Cibe1n/T9bdX2UKGgGaAloD0MIfCdmvZikcECUhpRSlGgVTQgCaBZHQKJuFg5zYEp1fZQoaAZoCWgPQwiIR+LlacJsQJSGlFKUaBVL3mgWR0CibraTwDvFdX2UKGgGaAloD0MI9s5oq5JJcUCUhpRSlGgVS8xoFkdAom8iV6eGwnV9lChoBmgJaA9DCBL4w88/IHBAlIaUUpRoFUvtaBZHQKJvdfMwDeV1fZQoaAZoCWgPQwgX1LfMaeRwQJSGlFKUaBVNFgFoFkdAom/PMQmNR3V9lChoBmgJaA9DCEOrkzPUWXFAlIaUUpRoFU2dAWgWR0CicCT1kDp1dX2UKGgGaAloD0MI42vPLAmVckCUhpRSlGgVS+5oFkdAonCRw0fozXV9lChoBmgJaA9DCPeuQV86LHFAlIaUUpRoFU0FAWgWR0CicMZnDiwTdX2UKGgGaAloD0MIjZjZ53FbcECUhpRSlGgVS/BoFkdAonEhlMAWBXV9lChoBmgJaA9DCPX0EfhDBnBAlIaUUpRoFU0DAWgWR0CicTMNDtw8dX2UKGgGaAloD0MIYADhQwleb0CUhpRSlGgVS+BoFkdAonF7hYNiIHV9lChoBmgJaA9DCMIzoUlionFAlIaUUpRoFUvzaBZHQKJxf74SHuZ1fZQoaAZoCWgPQwhFLc2tEL1wQJSGlFKUaBVLxWgWR0CicYZsbedkdX2UKGgGaAloD0MI/3kaMMjRb0CUhpRSlGgVS+NoFkdAonILpeNT+HV9lChoBmgJaA9DCIbJVMEoDnJAlIaUUpRoFUvxaBZHQKJyIsMAmzB1fZQoaAZoCWgPQwiNKVjj7LJxQJSGlFKUaBVLyWgWR0CicnEeyRjjdX2UKGgGaAloD0MIC12JQHVMb0CUhpRSlGgVS+VoFkdAonKC5AhStXV9lChoBmgJaA9DCDEIrBwaAnFAlIaUUpRoFUvpaBZHQKJzHNTtLL91fZQoaAZoCWgPQwhvLZPheOtuQJSGlFKUaBVL42gWR0Cic0oEB8x9dX2UKGgGaAloD0MIi1BsBQ1bckCUhpRSlGgVS+JoFkdAonOBIre67XV9lChoBmgJaA9DCPiNrz1ztXBAlIaUUpRoFUvTaBZHQKJzl3BYV7B1fZQoaAZoCWgPQwhCeoocYuFwQJSGlFKUaBVL1WgWR0CidBr9VFQVdX2UKGgGaAloD0MIPkFiu7tZckCUhpRSlGgVTQEBaBZHQKJ0W7iADq51fZQoaAZoCWgPQwgVV5V913FxQJSGlFKUaBVL82gWR0CidHTI/7iydX2UKGgGaAloD0MIWU3XE902ckCUhpRSlGgVS+poFkdAonS4SDh99nV9lChoBmgJaA9DCH3rw3qjInBAlIaUUpRoFUvvaBZHQKJ0wzNUwSJ1fZQoaAZoCWgPQwjye5v+LCByQJSGlFKUaBVL0WgWR0CidOKPn0TUdX2UKGgGaAloD0MIHJlH/uCUcECUhpRSlGgVS+5oFkdAonVWW8h9s3V9lChoBmgJaA9DCGHgufdw3m9AlIaUUpRoFUvRaBZHQKJ1VzMA3kx1fZQoaAZoCWgPQwgf1hu1QvlwQJSGlFKUaBVL5WgWR0CidYZNwiqydX2UKGgGaAloD0MIOiLfpZTzcUCUhpRSlGgVS9RoFkdAonXrXL/0d3V9lChoBmgJaA9DCJVJDW1AR3FAlIaUUpRoFUvPaBZHQKJ2T+QU5+91fZQoaAZoCWgPQwj03EJXonBxQJSGlFKUaBVL12gWR0CidlUJfICEdX2UKGgGaAloD0MIE0ceiCz/cECUhpRSlGgVTSUBaBZHQKJ3J2Pkq+d1fZQoaAZoCWgPQwjb+X5qPKJuQJSGlFKUaBVL4mgWR0Cid1rlFMIvdX2UKGgGaAloD0MIPIbHfhaabUCUhpRSlGgVS9JoFkdAonevzMA3k3V9lChoBmgJaA9DCHMwmwDDkXJAlIaUUpRoFUvhaBZHQKJ3w+4b0e51fZQoaAZoCWgPQwi371F//ddyQJSGlFKUaBVNFwFoFkdAonfdI/Z/TnV9lChoBmgJaA9DCMiVehZE/3JAlIaUUpRoFUvGaBZHQKJ4BnyNGVl1fZQoaAZoCWgPQwgdq5SeqRpxQJSGlFKUaBVNAAFoFkdAongqXyAhCHV9lChoBmgJaA9DCAA7N23Gv2FAlIaUUpRoFU3oA2gWR0CieGRqGlANdX2UKGgGaAloD0MI4Qz+fjGrbUCUhpRSlGgVS+RoFkdAonhvi704BHV9lChoBmgJaA9DCKq4cYt5mW9AlIaUUpRoFUvcaBZHQKJ4g+9rXUZ1fZQoaAZoCWgPQwjcvHFSGLZxQJSGlFKUaBVL0mgWR0CieSqSxJNCdX2UKGgGaAloD0MI98jmqrnGcECUhpRSlGgVS+toFkdAonmIVO9FnnV9lChoBmgJaA9DCAtjC0EOZ3FAlIaUUpRoFU0TAWgWR0CieaanivPkdX2UKGgGaAloD0MI6wJeZtgdc0CUhpRSlGgVS8xoFkdAonoeejEehnV9lChoBmgJaA9DCAe3tYXnX0VAlIaUUpRoFUviaBZHQKJ6RDiOvMd1fZQoaAZoCWgPQwgdAHFXL99wQJSGlFKUaBVL3mgWR0Ciesj7IkqudX2UKGgGaAloD0MIJ0wYzcotcECUhpRSlGgVS+JoFkdAonrxEWqLj3V9lChoBmgJaA9DCD9SRIZVCl9AlIaUUpRoFU3oA2gWR0Cie1IdMj/udX2UKGgGaAloD0MI2gQYlr8Db0CUhpRSlGgVS9VoFkdAont0LncL0HV9lChoBmgJaA9DCPRsVn0uV3FAlIaUUpRoFU0EAWgWR0Cie5X2mHgxdX2UKGgGaAloD0MIo5BkVm92cUCUhpRSlGgVS/xoFkdAonucyULUkXV9lChoBmgJaA9DCPOOU3Rk8HBAlIaUUpRoFU0gAWgWR0Cie6Z1/2CedX2UKGgGaAloD0MIpYRgVX0HcECUhpRSlGgVS+5oFkdAonuvZoPCmHV9lChoBmgJaA9DCPHwngMLVHJAlIaUUpRoFUv4aBZHQKJ7weA/cFh1fZQoaAZoCWgPQwhwXTEjfHxwQJSGlFKUaBVL8WgWR0CifGQQ+UyIdX2UKGgGaAloD0MIAcCxZw/AcECUhpRSlGgVS/BoFkdAonzVp9JBgXV9lChoBmgJaA9DCKErEaj+jnBAlIaUUpRoFUvuaBZHQKJ9ajW07bN1fZQoaAZoCWgPQwhAFw0ZzxtxQJSGlFKUaBVNAAFoFkdAon2K/h2nsXV9lChoBmgJaA9DCMrBbALM4HFAlIaUUpRoFUvDaBZHQKJ+R4cFQl91fZQoaAZoCWgPQwh+jLlrCUVxQJSGlFKUaBVL+WgWR0CiflisGPgfdX2UKGgGaAloD0MIRWgEG1fxcECUhpRSlGgVTQYBaBZHQKJ+YsySFGp1fZQoaAZoCWgPQwhvZ195UHZwQJSGlFKUaBVL4mgWR0CifoamfoRqdX2UKGgGaAloD0MIRDaQLrbPc0CUhpRSlGgVS+RoFkdAon647DEWI3V9lChoBmgJaA9DCLDkKhZ/3HJAlIaUUpRoFUvYaBZHQKJ+wzJp35h1fZQoaAZoCWgPQwhSEDy+PV5xQJSGlFKUaBVL/2gWR0CifyKIacZtdX2UKGgGaAloD0MIEALyJRQ5cECUhpRSlGgVS/poFkdAon8myZ8a43V9lChoBmgJaA9DCDChgsOLNmRAlIaUUpRoFU3oA2gWR0CifyQtjCpFdX2UKGgGaAloD0MIgqlm1tJabUCUhpRSlGgVS+5oFkdAon/PfAKv3nV9lChoBmgJaA9DCBcQWg/f/W5AlIaUUpRoFUvsaBZHQKKAUm4y44J1fZQoaAZoCWgPQwhda+9T1eBuQJSGlFKUaBVL2GgWR0CigKgNoakzdX2UKGgGaAloD0MIsOQqFj+ObkCUhpRSlGgVS9poFkdAooDLOJLuhXV9lChoBmgJaA9DCFVLOsqBmnJAlIaUUpRoFUvOaBZHQKKBV3bmEGt1fZQoaAZoCWgPQwi45o7+F/hxQJSGlFKUaBVL2GgWR0CigYuxKQJYdX2UKGgGaAloD0MIguLHmHtfcUCUhpRSlGgVS91oFkdAooH5RMvh63V9lChoBmgJaA9DCLyuX7CbXXBAlIaUUpRoFUv7aBZHQKKCAENe+mF1fZQoaAZoCWgPQwgbE2Iuaa9wQJSGlFKUaBVL8WgWR0CighfmT1TSdX2UKGgGaAloD0MIpddmY6XGcUCUhpRSlGgVS9RoFkdAooJD850bLnV9lChoBmgJaA9DCJLmj2lt8WBAlIaUUpRoFU3oA2gWR0CiglfgJkXldX2UKGgGaAloD0MIpPyk2uctckCUhpRSlGgVS99oFkdAooJt4VymynV9lChoBmgJaA9DCFd2weDaynFAlIaUUpRoFUviaBZHQKKCdkT6BRR1fZQoaAZoCWgPQwjM64hDtqFxQJSGlFKUaBVNCAFoFkdAooKZHG0eEXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar-ppo-1m-steps.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:431edb86ff4bce983c93f72e44c5d333b4c5949170251165d0b97c62194a710b
|
3 |
+
size 146309
|
lunar-ppo-1m-steps/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
lunar-ppo-1m-steps/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f50f5219040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f50f52190d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f50f5219160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f50f52191f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f50f5219280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f50f5219310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f50f52193a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f50f5219430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f50f52194c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f50f5219550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f50f52195e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f50f52144b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673206994328119291,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.015808000000000044,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXtkFg+vmbUCUhpRSlIwBbJRL0YwBdJRHQKJok495hSd1fZQoaAZoCWgPQwjHvfkN09FyQJSGlFKUaBVL2WgWR0CiaPw66reZdX2UKGgGaAloD0MIceKrHUW7b0CUhpRSlGgVS/NoFkdAomkQqCpWFXV9lChoBmgJaA9DCP60UZ0Og3FAlIaUUpRoFUv2aBZHQKJqUOJ+Dvp1fZQoaAZoCWgPQwjMmII1jvtwQJSGlFKUaBVL52gWR0CialgDifg8dX2UKGgGaAloD0MICOi+nBk2cUCUhpRSlGgVS8ZoFkdAomrHhwVCX3V9lChoBmgJaA9DCMsPXOWJ+W5AlIaUUpRoFUvdaBZHQKJrHWjoIOZ1fZQoaAZoCWgPQwiVLCehdI5wQJSGlFKUaBVLzmgWR0Cia6TM7lq8dX2UKGgGaAloD0MIjBTKwlcpc0CUhpRSlGgVS9poFkdAomvo9q1w53V9lChoBmgJaA9DCOavkLmy4W1AlIaUUpRoFUvWaBZHQKJsObcXWOJ1fZQoaAZoCWgPQwgLnGwDt2lwQJSGlFKUaBVL6mgWR0CibE+uV5bAdX2UKGgGaAloD0MIiQrVzUU+ZkCUhpRSlGgVTegDaBZHQKJsgxnFo+R1fZQoaAZoCWgPQwg5tp4hHEtxQJSGlFKUaBVL9WgWR0CibPMTviLmdX2UKGgGaAloD0MI0XR2MvgscUCUhpRSlGgVS/9oFkdAom1PIlt0m3V9lChoBmgJaA9DCFrXaDmQUnFAlIaUUpRoFUv+aBZHQKJt7C2tuDV1fZQoaAZoCWgPQwhx5IHI4jhyQJSGlFKUaBVL+mgWR0Cibe1n/T9bdX2UKGgGaAloD0MIfCdmvZikcECUhpRSlGgVTQgCaBZHQKJuFg5zYEp1fZQoaAZoCWgPQwiIR+LlacJsQJSGlFKUaBVL3mgWR0CibraTwDvFdX2UKGgGaAloD0MI9s5oq5JJcUCUhpRSlGgVS8xoFkdAom8iV6eGwnV9lChoBmgJaA9DCBL4w88/IHBAlIaUUpRoFUvtaBZHQKJvdfMwDeV1fZQoaAZoCWgPQwgX1LfMaeRwQJSGlFKUaBVNFgFoFkdAom/PMQmNR3V9lChoBmgJaA9DCEOrkzPUWXFAlIaUUpRoFU2dAWgWR0CicCT1kDp1dX2UKGgGaAloD0MI42vPLAmVckCUhpRSlGgVS+5oFkdAonCRw0fozXV9lChoBmgJaA9DCPeuQV86LHFAlIaUUpRoFU0FAWgWR0CicMZnDiwTdX2UKGgGaAloD0MIjZjZ53FbcECUhpRSlGgVS/BoFkdAonEhlMAWBXV9lChoBmgJaA9DCPX0EfhDBnBAlIaUUpRoFU0DAWgWR0CicTMNDtw8dX2UKGgGaAloD0MIYADhQwleb0CUhpRSlGgVS+BoFkdAonF7hYNiIHV9lChoBmgJaA9DCMIzoUlionFAlIaUUpRoFUvzaBZHQKJxf74SHuZ1fZQoaAZoCWgPQwhFLc2tEL1wQJSGlFKUaBVLxWgWR0CicYZsbedkdX2UKGgGaAloD0MI/3kaMMjRb0CUhpRSlGgVS+NoFkdAonILpeNT+HV9lChoBmgJaA9DCIbJVMEoDnJAlIaUUpRoFUvxaBZHQKJyIsMAmzB1fZQoaAZoCWgPQwiNKVjj7LJxQJSGlFKUaBVLyWgWR0CicnEeyRjjdX2UKGgGaAloD0MIC12JQHVMb0CUhpRSlGgVS+VoFkdAonKC5AhStXV9lChoBmgJaA9DCDEIrBwaAnFAlIaUUpRoFUvpaBZHQKJzHNTtLL91fZQoaAZoCWgPQwhvLZPheOtuQJSGlFKUaBVL42gWR0Cic0oEB8x9dX2UKGgGaAloD0MIi1BsBQ1bckCUhpRSlGgVS+JoFkdAonOBIre67XV9lChoBmgJaA9DCPiNrz1ztXBAlIaUUpRoFUvTaBZHQKJzl3BYV7B1fZQoaAZoCWgPQwhCeoocYuFwQJSGlFKUaBVL1WgWR0CidBr9VFQVdX2UKGgGaAloD0MIPkFiu7tZckCUhpRSlGgVTQEBaBZHQKJ0W7iADq51fZQoaAZoCWgPQwgVV5V913FxQJSGlFKUaBVL82gWR0CidHTI/7iydX2UKGgGaAloD0MIWU3XE902ckCUhpRSlGgVS+poFkdAonS4SDh99nV9lChoBmgJaA9DCH3rw3qjInBAlIaUUpRoFUvvaBZHQKJ0wzNUwSJ1fZQoaAZoCWgPQwjye5v+LCByQJSGlFKUaBVL0WgWR0CidOKPn0TUdX2UKGgGaAloD0MIHJlH/uCUcECUhpRSlGgVS+5oFkdAonVWW8h9s3V9lChoBmgJaA9DCGHgufdw3m9AlIaUUpRoFUvRaBZHQKJ1VzMA3kx1fZQoaAZoCWgPQwgf1hu1QvlwQJSGlFKUaBVL5WgWR0CidYZNwiqydX2UKGgGaAloD0MIOiLfpZTzcUCUhpRSlGgVS9RoFkdAonXrXL/0d3V9lChoBmgJaA9DCJVJDW1AR3FAlIaUUpRoFUvPaBZHQKJ2T+QU5+91fZQoaAZoCWgPQwj03EJXonBxQJSGlFKUaBVL12gWR0CidlUJfICEdX2UKGgGaAloD0MIE0ceiCz/cECUhpRSlGgVTSUBaBZHQKJ3J2Pkq+d1fZQoaAZoCWgPQwjb+X5qPKJuQJSGlFKUaBVL4mgWR0Cid1rlFMIvdX2UKGgGaAloD0MIPIbHfhaabUCUhpRSlGgVS9JoFkdAonevzMA3k3V9lChoBmgJaA9DCHMwmwDDkXJAlIaUUpRoFUvhaBZHQKJ3w+4b0e51fZQoaAZoCWgPQwi371F//ddyQJSGlFKUaBVNFwFoFkdAonfdI/Z/TnV9lChoBmgJaA9DCMiVehZE/3JAlIaUUpRoFUvGaBZHQKJ4BnyNGVl1fZQoaAZoCWgPQwgdq5SeqRpxQJSGlFKUaBVNAAFoFkdAongqXyAhCHV9lChoBmgJaA9DCAA7N23Gv2FAlIaUUpRoFU3oA2gWR0CieGRqGlANdX2UKGgGaAloD0MI4Qz+fjGrbUCUhpRSlGgVS+RoFkdAonhvi704BHV9lChoBmgJaA9DCKq4cYt5mW9AlIaUUpRoFUvcaBZHQKJ4g+9rXUZ1fZQoaAZoCWgPQwjcvHFSGLZxQJSGlFKUaBVL0mgWR0CieSqSxJNCdX2UKGgGaAloD0MI98jmqrnGcECUhpRSlGgVS+toFkdAonmIVO9FnnV9lChoBmgJaA9DCAtjC0EOZ3FAlIaUUpRoFU0TAWgWR0CieaanivPkdX2UKGgGaAloD0MI6wJeZtgdc0CUhpRSlGgVS8xoFkdAonoeejEehnV9lChoBmgJaA9DCAe3tYXnX0VAlIaUUpRoFUviaBZHQKJ6RDiOvMd1fZQoaAZoCWgPQwgdAHFXL99wQJSGlFKUaBVL3mgWR0Ciesj7IkqudX2UKGgGaAloD0MIJ0wYzcotcECUhpRSlGgVS+JoFkdAonrxEWqLj3V9lChoBmgJaA9DCD9SRIZVCl9AlIaUUpRoFU3oA2gWR0Cie1IdMj/udX2UKGgGaAloD0MI2gQYlr8Db0CUhpRSlGgVS9VoFkdAont0LncL0HV9lChoBmgJaA9DCPRsVn0uV3FAlIaUUpRoFU0EAWgWR0Cie5X2mHgxdX2UKGgGaAloD0MIo5BkVm92cUCUhpRSlGgVS/xoFkdAonucyULUkXV9lChoBmgJaA9DCPOOU3Rk8HBAlIaUUpRoFU0gAWgWR0Cie6Z1/2CedX2UKGgGaAloD0MIpYRgVX0HcECUhpRSlGgVS+5oFkdAonuvZoPCmHV9lChoBmgJaA9DCPHwngMLVHJAlIaUUpRoFUv4aBZHQKJ7weA/cFh1fZQoaAZoCWgPQwhwXTEjfHxwQJSGlFKUaBVL8WgWR0CifGQQ+UyIdX2UKGgGaAloD0MIAcCxZw/AcECUhpRSlGgVS/BoFkdAonzVp9JBgXV9lChoBmgJaA9DCKErEaj+jnBAlIaUUpRoFUvuaBZHQKJ9ajW07bN1fZQoaAZoCWgPQwhAFw0ZzxtxQJSGlFKUaBVNAAFoFkdAon2K/h2nsXV9lChoBmgJaA9DCMrBbALM4HFAlIaUUpRoFUvDaBZHQKJ+R4cFQl91fZQoaAZoCWgPQwh+jLlrCUVxQJSGlFKUaBVL+WgWR0CiflisGPgfdX2UKGgGaAloD0MIRWgEG1fxcECUhpRSlGgVTQYBaBZHQKJ+YsySFGp1fZQoaAZoCWgPQwhvZ195UHZwQJSGlFKUaBVL4mgWR0CifoamfoRqdX2UKGgGaAloD0MIRDaQLrbPc0CUhpRSlGgVS+RoFkdAon647DEWI3V9lChoBmgJaA9DCLDkKhZ/3HJAlIaUUpRoFUvYaBZHQKJ+wzJp35h1fZQoaAZoCWgPQwhSEDy+PV5xQJSGlFKUaBVL/2gWR0CifyKIacZtdX2UKGgGaAloD0MIEALyJRQ5cECUhpRSlGgVS/poFkdAon8myZ8a43V9lChoBmgJaA9DCDChgsOLNmRAlIaUUpRoFU3oA2gWR0CifyQtjCpFdX2UKGgGaAloD0MIgqlm1tJabUCUhpRSlGgVS+5oFkdAon/PfAKv3nV9lChoBmgJaA9DCBcQWg/f/W5AlIaUUpRoFUvsaBZHQKKAUm4y44J1fZQoaAZoCWgPQwhda+9T1eBuQJSGlFKUaBVL2GgWR0CigKgNoakzdX2UKGgGaAloD0MIsOQqFj+ObkCUhpRSlGgVS9poFkdAooDLOJLuhXV9lChoBmgJaA9DCFVLOsqBmnJAlIaUUpRoFUvOaBZHQKKBV3bmEGt1fZQoaAZoCWgPQwi45o7+F/hxQJSGlFKUaBVL2GgWR0CigYuxKQJYdX2UKGgGaAloD0MIguLHmHtfcUCUhpRSlGgVS91oFkdAooH5RMvh63V9lChoBmgJaA9DCLyuX7CbXXBAlIaUUpRoFUv7aBZHQKKCAENe+mF1fZQoaAZoCWgPQwgbE2Iuaa9wQJSGlFKUaBVL8WgWR0CighfmT1TSdX2UKGgGaAloD0MIpddmY6XGcUCUhpRSlGgVS9RoFkdAooJD850bLnV9lChoBmgJaA9DCJLmj2lt8WBAlIaUUpRoFU3oA2gWR0CiglfgJkXldX2UKGgGaAloD0MIpPyk2uctckCUhpRSlGgVS99oFkdAooJt4VymynV9lChoBmgJaA9DCFd2weDaynFAlIaUUpRoFUviaBZHQKKCdkT6BRR1fZQoaAZoCWgPQwjM64hDtqFxQJSGlFKUaBVNCAFoFkdAooKZHG0eEXVlLg=="
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 310,
|
76 |
+
"n_steps": 2048,
|
77 |
+
"gamma": 0.99,
|
78 |
+
"gae_lambda": 0.95,
|
79 |
+
"ent_coef": 0.0,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 10,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
lunar-ppo-1m-steps/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5a2029f726257d8e5ba3ac93736bf7260f66386fb47067b59c31dac365f9fa6
|
3 |
+
size 88057
|
lunar-ppo-1m-steps/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1be3bad469ad4358af1e8411e0ca0c6c87e79bfbcd5df6aba4a82e16d89def2d
|
3 |
+
size 43201
|
lunar-ppo-1m-steps/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar-ppo-1m-steps/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (219 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.61350830223995, "std_reward": 20.300700806262256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T20:20:38.319533"}
|