{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f50f52144b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673206994328119291, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXtkFg+vmbUCUhpRSlIwBbJRL0YwBdJRHQKJok495hSd1fZQoaAZoCWgPQwjHvfkN09FyQJSGlFKUaBVL2WgWR0CiaPw66reZdX2UKGgGaAloD0MIceKrHUW7b0CUhpRSlGgVS/NoFkdAomkQqCpWFXV9lChoBmgJaA9DCP60UZ0Og3FAlIaUUpRoFUv2aBZHQKJqUOJ+Dvp1fZQoaAZoCWgPQwjMmII1jvtwQJSGlFKUaBVL52gWR0CialgDifg8dX2UKGgGaAloD0MICOi+nBk2cUCUhpRSlGgVS8ZoFkdAomrHhwVCX3V9lChoBmgJaA9DCMsPXOWJ+W5AlIaUUpRoFUvdaBZHQKJrHWjoIOZ1fZQoaAZoCWgPQwiVLCehdI5wQJSGlFKUaBVLzmgWR0Cia6TM7lq8dX2UKGgGaAloD0MIjBTKwlcpc0CUhpRSlGgVS9poFkdAomvo9q1w53V9lChoBmgJaA9DCOavkLmy4W1AlIaUUpRoFUvWaBZHQKJsObcXWOJ1fZQoaAZoCWgPQwgLnGwDt2lwQJSGlFKUaBVL6mgWR0CibE+uV5bAdX2UKGgGaAloD0MIiQrVzUU+ZkCUhpRSlGgVTegDaBZHQKJsgxnFo+R1fZQoaAZoCWgPQwg5tp4hHEtxQJSGlFKUaBVL9WgWR0CibPMTviLmdX2UKGgGaAloD0MI0XR2MvgscUCUhpRSlGgVS/9oFkdAom1PIlt0m3V9lChoBmgJaA9DCFrXaDmQUnFAlIaUUpRoFUv+aBZHQKJt7C2tuDV1fZQoaAZoCWgPQwhx5IHI4jhyQJSGlFKUaBVL+mgWR0Cibe1n/T9bdX2UKGgGaAloD0MIfCdmvZikcECUhpRSlGgVTQgCaBZHQKJuFg5zYEp1fZQoaAZoCWgPQwiIR+LlacJsQJSGlFKUaBVL3mgWR0CibraTwDvFdX2UKGgGaAloD0MI9s5oq5JJcUCUhpRSlGgVS8xoFkdAom8iV6eGwnV9lChoBmgJaA9DCBL4w88/IHBAlIaUUpRoFUvtaBZHQKJvdfMwDeV1fZQoaAZoCWgPQwgX1LfMaeRwQJSGlFKUaBVNFgFoFkdAom/PMQmNR3V9lChoBmgJaA9DCEOrkzPUWXFAlIaUUpRoFU2dAWgWR0CicCT1kDp1dX2UKGgGaAloD0MI42vPLAmVckCUhpRSlGgVS+5oFkdAonCRw0fozXV9lChoBmgJaA9DCPeuQV86LHFAlIaUUpRoFU0FAWgWR0CicMZnDiwTdX2UKGgGaAloD0MIjZjZ53FbcECUhpRSlGgVS/BoFkdAonEhlMAWBXV9lChoBmgJaA9DCPX0EfhDBnBAlIaUUpRoFU0DAWgWR0CicTMNDtw8dX2UKGgGaAloD0MIYADhQwleb0CUhpRSlGgVS+BoFkdAonF7hYNiIHV9lChoBmgJaA9DCMIzoUlionFAlIaUUpRoFUvzaBZHQKJxf74SHuZ1fZQoaAZoCWgPQwhFLc2tEL1wQJSGlFKUaBVLxWgWR0CicYZsbedkdX2UKGgGaAloD0MI/3kaMMjRb0CUhpRSlGgVS+NoFkdAonILpeNT+HV9lChoBmgJaA9DCIbJVMEoDnJAlIaUUpRoFUvxaBZHQKJyIsMAmzB1fZQoaAZoCWgPQwiNKVjj7LJxQJSGlFKUaBVLyWgWR0CicnEeyRjjdX2UKGgGaAloD0MIC12JQHVMb0CUhpRSlGgVS+VoFkdAonKC5AhStXV9lChoBmgJaA9DCDEIrBwaAnFAlIaUUpRoFUvpaBZHQKJzHNTtLL91fZQoaAZoCWgPQwhvLZPheOtuQJSGlFKUaBVL42gWR0Cic0oEB8x9dX2UKGgGaAloD0MIi1BsBQ1bckCUhpRSlGgVS+JoFkdAonOBIre67XV9lChoBmgJaA9DCPiNrz1ztXBAlIaUUpRoFUvTaBZHQKJzl3BYV7B1fZQoaAZoCWgPQwhCeoocYuFwQJSGlFKUaBVL1WgWR0CidBr9VFQVdX2UKGgGaAloD0MIPkFiu7tZckCUhpRSlGgVTQEBaBZHQKJ0W7iADq51fZQoaAZoCWgPQwgVV5V913FxQJSGlFKUaBVL82gWR0CidHTI/7iydX2UKGgGaAloD0MIWU3XE902ckCUhpRSlGgVS+poFkdAonS4SDh99nV9lChoBmgJaA9DCH3rw3qjInBAlIaUUpRoFUvvaBZHQKJ0wzNUwSJ1fZQoaAZoCWgPQwjye5v+LCByQJSGlFKUaBVL0WgWR0CidOKPn0TUdX2UKGgGaAloD0MIHJlH/uCUcECUhpRSlGgVS+5oFkdAonVWW8h9s3V9lChoBmgJaA9DCGHgufdw3m9AlIaUUpRoFUvRaBZHQKJ1VzMA3kx1fZQoaAZoCWgPQwgf1hu1QvlwQJSGlFKUaBVL5WgWR0CidYZNwiqydX2UKGgGaAloD0MIOiLfpZTzcUCUhpRSlGgVS9RoFkdAonXrXL/0d3V9lChoBmgJaA9DCJVJDW1AR3FAlIaUUpRoFUvPaBZHQKJ2T+QU5+91fZQoaAZoCWgPQwj03EJXonBxQJSGlFKUaBVL12gWR0CidlUJfICEdX2UKGgGaAloD0MIE0ceiCz/cECUhpRSlGgVTSUBaBZHQKJ3J2Pkq+d1fZQoaAZoCWgPQwjb+X5qPKJuQJSGlFKUaBVL4mgWR0Cid1rlFMIvdX2UKGgGaAloD0MIPIbHfhaabUCUhpRSlGgVS9JoFkdAonevzMA3k3V9lChoBmgJaA9DCHMwmwDDkXJAlIaUUpRoFUvhaBZHQKJ3w+4b0e51fZQoaAZoCWgPQwi371F//ddyQJSGlFKUaBVNFwFoFkdAonfdI/Z/TnV9lChoBmgJaA9DCMiVehZE/3JAlIaUUpRoFUvGaBZHQKJ4BnyNGVl1fZQoaAZoCWgPQwgdq5SeqRpxQJSGlFKUaBVNAAFoFkdAongqXyAhCHV9lChoBmgJaA9DCAA7N23Gv2FAlIaUUpRoFU3oA2gWR0CieGRqGlANdX2UKGgGaAloD0MI4Qz+fjGrbUCUhpRSlGgVS+RoFkdAonhvi704BHV9lChoBmgJaA9DCKq4cYt5mW9AlIaUUpRoFUvcaBZHQKJ4g+9rXUZ1fZQoaAZoCWgPQwjcvHFSGLZxQJSGlFKUaBVL0mgWR0CieSqSxJNCdX2UKGgGaAloD0MI98jmqrnGcECUhpRSlGgVS+toFkdAonmIVO9FnnV9lChoBmgJaA9DCAtjC0EOZ3FAlIaUUpRoFU0TAWgWR0CieaanivPkdX2UKGgGaAloD0MI6wJeZtgdc0CUhpRSlGgVS8xoFkdAonoeejEehnV9lChoBmgJaA9DCAe3tYXnX0VAlIaUUpRoFUviaBZHQKJ6RDiOvMd1fZQoaAZoCWgPQwgdAHFXL99wQJSGlFKUaBVL3mgWR0Ciesj7IkqudX2UKGgGaAloD0MIJ0wYzcotcECUhpRSlGgVS+JoFkdAonrxEWqLj3V9lChoBmgJaA9DCD9SRIZVCl9AlIaUUpRoFU3oA2gWR0Cie1IdMj/udX2UKGgGaAloD0MI2gQYlr8Db0CUhpRSlGgVS9VoFkdAont0LncL0HV9lChoBmgJaA9DCPRsVn0uV3FAlIaUUpRoFU0EAWgWR0Cie5X2mHgxdX2UKGgGaAloD0MIo5BkVm92cUCUhpRSlGgVS/xoFkdAonucyULUkXV9lChoBmgJaA9DCPOOU3Rk8HBAlIaUUpRoFU0gAWgWR0Cie6Z1/2CedX2UKGgGaAloD0MIpYRgVX0HcECUhpRSlGgVS+5oFkdAonuvZoPCmHV9lChoBmgJaA9DCPHwngMLVHJAlIaUUpRoFUv4aBZHQKJ7weA/cFh1fZQoaAZoCWgPQwhwXTEjfHxwQJSGlFKUaBVL8WgWR0CifGQQ+UyIdX2UKGgGaAloD0MIAcCxZw/AcECUhpRSlGgVS/BoFkdAonzVp9JBgXV9lChoBmgJaA9DCKErEaj+jnBAlIaUUpRoFUvuaBZHQKJ9ajW07bN1fZQoaAZoCWgPQwhAFw0ZzxtxQJSGlFKUaBVNAAFoFkdAon2K/h2nsXV9lChoBmgJaA9DCMrBbALM4HFAlIaUUpRoFUvDaBZHQKJ+R4cFQl91fZQoaAZoCWgPQwh+jLlrCUVxQJSGlFKUaBVL+WgWR0CiflisGPgfdX2UKGgGaAloD0MIRWgEG1fxcECUhpRSlGgVTQYBaBZHQKJ+YsySFGp1fZQoaAZoCWgPQwhvZ195UHZwQJSGlFKUaBVL4mgWR0CifoamfoRqdX2UKGgGaAloD0MIRDaQLrbPc0CUhpRSlGgVS+RoFkdAon647DEWI3V9lChoBmgJaA9DCLDkKhZ/3HJAlIaUUpRoFUvYaBZHQKJ+wzJp35h1fZQoaAZoCWgPQwhSEDy+PV5xQJSGlFKUaBVL/2gWR0CifyKIacZtdX2UKGgGaAloD0MIEALyJRQ5cECUhpRSlGgVS/poFkdAon8myZ8a43V9lChoBmgJaA9DCDChgsOLNmRAlIaUUpRoFU3oA2gWR0CifyQtjCpFdX2UKGgGaAloD0MIgqlm1tJabUCUhpRSlGgVS+5oFkdAon/PfAKv3nV9lChoBmgJaA9DCBcQWg/f/W5AlIaUUpRoFUvsaBZHQKKAUm4y44J1fZQoaAZoCWgPQwhda+9T1eBuQJSGlFKUaBVL2GgWR0CigKgNoakzdX2UKGgGaAloD0MIsOQqFj+ObkCUhpRSlGgVS9poFkdAooDLOJLuhXV9lChoBmgJaA9DCFVLOsqBmnJAlIaUUpRoFUvOaBZHQKKBV3bmEGt1fZQoaAZoCWgPQwi45o7+F/hxQJSGlFKUaBVL2GgWR0CigYuxKQJYdX2UKGgGaAloD0MIguLHmHtfcUCUhpRSlGgVS91oFkdAooH5RMvh63V9lChoBmgJaA9DCLyuX7CbXXBAlIaUUpRoFUv7aBZHQKKCAENe+mF1fZQoaAZoCWgPQwgbE2Iuaa9wQJSGlFKUaBVL8WgWR0CighfmT1TSdX2UKGgGaAloD0MIpddmY6XGcUCUhpRSlGgVS9RoFkdAooJD850bLnV9lChoBmgJaA9DCJLmj2lt8WBAlIaUUpRoFU3oA2gWR0CiglfgJkXldX2UKGgGaAloD0MIpPyk2uctckCUhpRSlGgVS99oFkdAooJt4VymynV9lChoBmgJaA9DCFd2weDaynFAlIaUUpRoFUviaBZHQKKCdkT6BRR1fZQoaAZoCWgPQwjM64hDtqFxQJSGlFKUaBVNCAFoFkdAooKZHG0eEXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}