redshift51
commited on
Commit
·
9eacf70
1
Parent(s):
4c26f7c
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -48.59 +/- 23.44
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd8045a3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd8045a430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd8045a4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd8045a550>", "_build": "<function ActorCriticPolicy._build at 0x7fdd8045a5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdd8045a670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd8045a700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdd8045a790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd8045a820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd8045a8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd8045a940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdd8044fed0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 200704, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651849631.1967235, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAObYwr17fpS6ezDIOxaQjDha/ME623sPuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxqUqbXGfW0CUhpRSlIwBbJRN6AOMAXSUR0BkMg5WBBiTdX2UKGgGaAloD0MI9x3DYz+XQsCUhpRSlGgVTaYBaBZHQGQ+FGwzLwF1fZQoaAZoCWgPQwhnCwith5hmQJSGlFKUaBVN6ANoFkdAZHEa6z3RHHV9lChoBmgJaA9DCCR+xRouQjvAlIaUUpRoFU1fAWgWR0BkfOGCZnctdX2UKGgGaAloD0MIrtSzIJRnQ8CUhpRSlGgVTaQBaBZHQGSQtNJvo/11fZQoaAZoCWgPQwj4GKw41dorQJSGlFKUaBVL9mgWR0BklwxHoX9BdX2UKGgGaAloD0MILXx9rUsOXkCUhpRSlGgVTegDaBZHQGTD1F6Rhc91fZQoaAZoCWgPQwhjtfl/1YksQJSGlFKUaBVNgAFoFkdAZM9vuPV/c3V9lChoBmgJaA9DCI53R8ZqlUrAlIaUUpRoFU3rAWgWR0Bk5MMkQf6odX2UKGgGaAloD0MIVVG8ytqRUkCUhpRSlGgVTegDaBZHQGUOtyxRl6J1fZQoaAZoCWgPQwgDPj+MECYiwJSGlFKUaBVN6ANoFkdAZT30bLlmvnV9lChoBmgJaA9DCAQEc/T4HRrAlIaUUpRoFU0vAWgWR0BlRngBLf1pdX2UKGgGaAloD0MIfxKfO8HKXUCUhpRSlGgVTegDaBZHQGV+dBa9sad1fZQoaAZoCWgPQwjhfVUu1D1hQJSGlFKUaBVN6ANoFkdAZbm52hZha3V9lChoBmgJaA9DCF5Ih4cwdWFAlIaUUpRoFU3oA2gWR0Bl8AfSx7iRdX2UKGgGaAloD0MIk3L3OT7URMCUhpRSlGgVTU4BaBZHQGX5ow22oeh1fZQoaAZoCWgPQwgHeNLCZaBZQJSGlFKUaBVN6ANoFkdAZiXuTibUgHV9lChoBmgJaA9DCKtbPSe9u1BAlIaUUpRoFU3oA2gWR0BmWxVENOM3dX2UKGgGaAloD0MIlKKVe4H2WUCUhpRSlGgVTegDaBZHQGaIgqEvkBF1fZQoaAZoCWgPQwhNgczOoiBYwJSGlFKUaBVNFAJoFkdAZqGB6rvLHXV9lChoBmgJaA9DCDLIXYQpLjBAlIaUUpRoFU3oA2gWR0Bm0zN0NjLCdX2UKGgGaAloD0MIVkeOdAZUSECUhpRSlGgVTegDaBZHQGcQhQemvW91fZQoaAZoCWgPQwhXCKuxhO5UQJSGlFKUaBVN6ANoFkdAZ0RjRUm2LHV9lChoBmgJaA9DCKeSAaCKC1bAlIaUUpRoFU0SAmgWR0BnVCESM98rdX2UKGgGaAloD0MIXTY656fnUUCUhpRSlGgVTegDaBZHQGeCIx59mYl1fZQoaAZoCWgPQwiNfcnGg3lWQJSGlFKUaBVN6ANoFkdAZ67RBNVR13V9lChoBmgJaA9DCB/WG7XCakzAlIaUUpRoFU0NAmgWR0Bny1ZX+2mYdX2UKGgGaAloD0MI20/G+DA3SMCUhpRSlGgVTSkCaBZHQGfdcclw97p1fZQoaAZoCWgPQwg4wMx38CNFQJSGlFKUaBVN6ANoFkdAaBpt0FKTS3V9lChoBmgJaA9DCH4CKEaWBCfAlIaUUpRoFU0MAmgWR0BoNN+I/JNkdX2UKGgGaAloD0MIbhPulXnzOECUhpRSlGgVTegDaBZHQGhv0/OdGy51fZQoaAZoCWgPQwhi1ouhnNxRQJSGlFKUaBVN6ANoFkdAaKYPFNtZWHV9lChoBmgJaA9DCHWtvU9VkF1AlIaUUpRoFU3oA2gWR0Bo1/rMTviMdX2UKGgGaAloD0MID2JnCp2mV8CUhpRSlGgVTdQBaBZHQGjoWiUPhAJ1fZQoaAZoCWgPQwjHvfkNEzdWwJSGlFKUaBVNxAFoFkdAaP74i5d4V3V9lChoBmgJaA9DCGZqErwht15AlIaUUpRoFU3oA2gWR0BpMPFxXGOudX2UKGgGaAloD0MItYe9UMD5Z0CUhpRSlGgVTVcCaBZHQGlIM9bHIZJ1fZQoaAZoCWgPQwiAn3HhQIgewJSGlFKUaBVL/GgWR0BpTnfGdZq3dX2UKGgGaAloD0MIgA2IEFeWRMCUhpRSlGgVTUgBaBZHQGldPKdQO4J1fZQoaAZoCWgPQwisqSwKO89nQJSGlFKUaBVNpwFoFkdAaWqPGyX2NHV9lChoBmgJaA9DCKQ1Bp0QmixAlIaUUpRoFUvBaBZHQGlu7aIvalF1fZQoaAZoCWgPQwiC/de5aeZfQJSGlFKUaBVN6ANoFkdAaapzGxUvPHV9lChoBmgJaA9DCC2zCMVW4FdAlIaUUpRoFU3oA2gWR0Bp6XEXLvCudX2UKGgGaAloD0MIz/dT4yV4akCUhpRSlGgVTQwCaBZHQGoBxVp9JBh1fZQoaAZoCWgPQwj0NjY7UotZQJSGlFKUaBVN6ANoFkdAajT7Uoa1kXV9lChoBmgJaA9DCE0QdR+AtDBAlIaUUpRoFU02AWgWR0BqPUth/iHZdX2UKGgGaAloD0MIm5DWGHSUXkCUhpRSlGgVTegDaBZHQGpz6X8fmtB1fZQoaAZoCWgPQwgvF/GdmKpbQJSGlFKUaBVN6ANoFkdAaqYaYu01InV9lChoBmgJaA9DCEBrfvylpT9AlIaUUpRoFU0oAWgWR0BqriR2bG3ndX2UKGgGaAloD0MIZk8Cm3OGQMCUhpRSlGgVTeIBaBZHQGrD5xzaK1p1fZQoaAZoCWgPQwiWBKipZcdUQJSGlFKUaBVN6ANoFkdAawmEB8x9HHV9lChoBmgJaA9DCINpGD4iRlZAlIaUUpRoFU3oA2gWR0BrQELDye7MdX2UKGgGaAloD0MIX2BWKNIRM0CUhpRSlGgVTZcBaBZHQGtOttQ9A5d1fZQoaAZoCWgPQwjxgLIpV5pJQJSGlFKUaBVN6ANoFkdAa46Iu5BkZ3V9lChoBmgJaA9DCDv+CwQBPFlAlIaUUpRoFU3oA2gWR0BrwM3CKrJbdX2UKGgGaAloD0MI3nGKjuQ7UECUhpRSlGgVTegDaBZHQGvw90zTF2p1fZQoaAZoCWgPQwgYB5eOOQhfwJSGlFKUaBVNNQJoFkdAbA0qo60Y0nV9lChoBmgJaA9DCM3MzMzMvFZAlIaUUpRoFU3oA2gWR0BsW3/tIClrdX2UKGgGaAloD0MIvqCFBIywUkCUhpRSlGgVTegDaBZHQGybT6ab4Jx1fZQoaAZoCWgPQwj/JalMMRJSQJSGlFKUaBVN6ANoFkdAbO4L6UJOWXV9lChoBmgJaA9DCGST/IhfgUJAlIaUUpRoFU3oA2gWR0BtKzXOGCZndX2UKGgGaAloD0MI9HAC02mNQMCUhpRSlGgVTUYCaBZHQG1BdQwblzV1fZQoaAZoCWgPQwjja88sCfpbwJSGlFKUaBVN4AFoFkdAbVhluFYdQ3V9lChoBmgJaA9DCP/MID6wmVNAlIaUUpRoFU3oA2gWR0Btsn6sQumKdX2UKGgGaAloD0MIyThGskdsTcCUhpRSlGgVTQsCaBZHQG3FbqIJqqR1fZQoaAZoCWgPQwjrNxPThUpXwJSGlFKUaBVNGQFoFkdAbcxHLidauHV9lChoBmgJaA9DCFdgyOpWkz7AlIaUUpRoFU3oA2gWR0BuDigRK6FudX2UKGgGaAloD0MIxr5k48GBWUCUhpRSlGgVTeQCaBZHQG4s5ooNNJx1fZQoaAZoCWgPQwiaJmw/GXMnwJSGlFKUaBVN8gFoFkdAbkWldkauOnV9lChoBmgJaA9DCIMyjSaXcmJAlIaUUpRoFU07AmgWR0BuWCtknTiLdX2UKGgGaAloD0MIVfoJZ7fHUkCUhpRSlGgVTegDaBZHQG6UdYwIt191fZQoaAZoCWgPQwiK5ZZWQ2ROQJSGlFKUaBVN6ANoFkdAbr9TYNAkcHV9lChoBmgJaA9DCGwIjsu4iFZAlIaUUpRoFU3oA2gWR0Bu/Jl8PWhAdX2UKGgGaAloD0MIfgG9cOcdV0CUhpRSlGgVTegDaBZHQG85Eq2Bret1fZQoaAZoCWgPQwg8nwH1ZkBfQJSGlFKUaBVNrQJoFkdAb1riKiwjdHV9lChoBmgJaA9DCGCxhovcf0HAlIaUUpRoFU3SAWgWR0BvaHuogmqpdX2UKGgGaAloD0MI1m670FxbUsCUhpRSlGgVTe0BaBZHQG9+BT4tYjl1fZQoaAZoCWgPQwhuowG8BShXQJSGlFKUaBVN6ANoFkdAb8NOMVDa5HV9lChoBmgJaA9DCL+bbtkhMFRAlIaUUpRoFU3oA2gWR0Bv/DNbC79RdX2UKGgGaAloD0MIoFBPH4FNWUCUhpRSlGgVTegDaBZHQHAcQzch1T11fZQoaAZoCWgPQwg5tTNMbWxRQJSGlFKUaBVN6ANoFkdAcDdcpb2US3V9lChoBmgJaA9DCPEvgsZMK11AlIaUUpRoFU3oA2gWR0BwV80+C9RKdX2UKGgGaAloD0MIkrBvJxFsXMCUhpRSlGgVTZ0CaBZHQHBpuDvmYBx1fZQoaAZoCWgPQwgIza57K/RHQJSGlFKUaBVN6ANoFkdAcIy6dUbT+nV9lChoBmgJaA9DCMVVZd8VkFLAlIaUUpRoFU0QAmgWR0BwnDK6nR9gdX2UKGgGaAloD0MIvJNPj23BY0CUhpRSlGgVTXkCaBZHQHCq5dnkDIR1fZQoaAZoCWgPQwgmqrcGtpZoQJSGlFKUaBVNEAJoFkdAcLnXnhbW3HV9lChoBmgJaA9DCCZtqu6RNFFAlIaUUpRoFU3oA2gWR0Bw1SwiaAnVdX2UKGgGaAloD0MIMZqV7UP5UECUhpRSlGgVTegDaBZHQHD6o+4b0e51fZQoaAZoCWgPQwj+JhQi4KVXQJSGlFKUaBVN6ANoFkdAcRuF/x2B8XV9lChoBmgJaA9DCEFn0qbqYELAlIaUUpRoFU3HAWgWR0BxIpe5WilBdX2UKGgGaAloD0MI4UbKFknEUkCUhpRSlGgVTegDaBZHQHFGZxiobXJ1fZQoaAZoCWgPQwgGLo81IxM7wJSGlFKUaBVN6gFoFkdAcVODCP6sQ3V9lChoBmgJaA9DCFN6ppcYtVDAlIaUUpRoFU0nAmgWR0BxXmaz/p+udX2UKGgGaAloD0MIWMaGbvbgUUCUhpRSlGgVTegDaBZHQHF7klJHy3F1fZQoaAZoCWgPQwgbR6zFp/dWQJSGlFKUaBVN6ANoFkdAcZtwyZa3Z3V9lChoBmgJaA9DCFcHQNzV3FVAlIaUUpRoFU3oA2gWR0BxuKOtGNJfdX2UKGgGaAloD0MIwqT4+ISpZECUhpRSlGgVTUQCaBZHQHHLfuogmqp1fZQoaAZoCWgPQwhzSdV2E9xYQJSGlFKUaBVN6ANoFkdAce0j8k2P1nV9lChoBmgJaA9DCJT1m4npZFxAlIaUUpRoFU3oA2gWR0ByDoNoakyldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 784, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-4.15.0-45-generic-x86_64-with-glibc2.27 #48~16.04.1-Ubuntu SMP Tue Jan 29 18:03:48 UTC 2019", "Python": "3.8.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae215b05d5d3932367b2da8cac9bcb4a4a969450f6b8283ee5a6384baea8700b
|
3 |
+
size 143024
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd8045a3a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd8045a430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd8045a4c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd8045a550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdd8045a5e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdd8045a670>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd8045a700>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdd8045a790>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd8045a820>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd8045a8b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd8045a940>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fdd8044fed0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 200704,
|
46 |
+
"_total_timesteps": 200000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651849631.1967235,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAObYwr17fpS6ezDIOxaQjDha/ME623sPuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxqUqbXGfW0CUhpRSlIwBbJRN6AOMAXSUR0BkMg5WBBiTdX2UKGgGaAloD0MI9x3DYz+XQsCUhpRSlGgVTaYBaBZHQGQ+FGwzLwF1fZQoaAZoCWgPQwhnCwith5hmQJSGlFKUaBVN6ANoFkdAZHEa6z3RHHV9lChoBmgJaA9DCCR+xRouQjvAlIaUUpRoFU1fAWgWR0BkfOGCZnctdX2UKGgGaAloD0MIrtSzIJRnQ8CUhpRSlGgVTaQBaBZHQGSQtNJvo/11fZQoaAZoCWgPQwj4GKw41dorQJSGlFKUaBVL9mgWR0BklwxHoX9BdX2UKGgGaAloD0MILXx9rUsOXkCUhpRSlGgVTegDaBZHQGTD1F6Rhc91fZQoaAZoCWgPQwhjtfl/1YksQJSGlFKUaBVNgAFoFkdAZM9vuPV/c3V9lChoBmgJaA9DCI53R8ZqlUrAlIaUUpRoFU3rAWgWR0Bk5MMkQf6odX2UKGgGaAloD0MIVVG8ytqRUkCUhpRSlGgVTegDaBZHQGUOtyxRl6J1fZQoaAZoCWgPQwgDPj+MECYiwJSGlFKUaBVN6ANoFkdAZT30bLlmvnV9lChoBmgJaA9DCAQEc/T4HRrAlIaUUpRoFU0vAWgWR0BlRngBLf1pdX2UKGgGaAloD0MIfxKfO8HKXUCUhpRSlGgVTegDaBZHQGV+dBa9sad1fZQoaAZoCWgPQwjhfVUu1D1hQJSGlFKUaBVN6ANoFkdAZbm52hZha3V9lChoBmgJaA9DCF5Ih4cwdWFAlIaUUpRoFU3oA2gWR0Bl8AfSx7iRdX2UKGgGaAloD0MIk3L3OT7URMCUhpRSlGgVTU4BaBZHQGX5ow22oeh1fZQoaAZoCWgPQwgHeNLCZaBZQJSGlFKUaBVN6ANoFkdAZiXuTibUgHV9lChoBmgJaA9DCKtbPSe9u1BAlIaUUpRoFU3oA2gWR0BmWxVENOM3dX2UKGgGaAloD0MIlKKVe4H2WUCUhpRSlGgVTegDaBZHQGaIgqEvkBF1fZQoaAZoCWgPQwhNgczOoiBYwJSGlFKUaBVNFAJoFkdAZqGB6rvLHXV9lChoBmgJaA9DCDLIXYQpLjBAlIaUUpRoFU3oA2gWR0Bm0zN0NjLCdX2UKGgGaAloD0MIVkeOdAZUSECUhpRSlGgVTegDaBZHQGcQhQemvW91fZQoaAZoCWgPQwhXCKuxhO5UQJSGlFKUaBVN6ANoFkdAZ0RjRUm2LHV9lChoBmgJaA9DCKeSAaCKC1bAlIaUUpRoFU0SAmgWR0BnVCESM98rdX2UKGgGaAloD0MIXTY656fnUUCUhpRSlGgVTegDaBZHQGeCIx59mYl1fZQoaAZoCWgPQwiNfcnGg3lWQJSGlFKUaBVN6ANoFkdAZ67RBNVR13V9lChoBmgJaA9DCB/WG7XCakzAlIaUUpRoFU0NAmgWR0Bny1ZX+2mYdX2UKGgGaAloD0MI20/G+DA3SMCUhpRSlGgVTSkCaBZHQGfdcclw97p1fZQoaAZoCWgPQwg4wMx38CNFQJSGlFKUaBVN6ANoFkdAaBpt0FKTS3V9lChoBmgJaA9DCH4CKEaWBCfAlIaUUpRoFU0MAmgWR0BoNN+I/JNkdX2UKGgGaAloD0MIbhPulXnzOECUhpRSlGgVTegDaBZHQGhv0/OdGy51fZQoaAZoCWgPQwhi1ouhnNxRQJSGlFKUaBVN6ANoFkdAaKYPFNtZWHV9lChoBmgJaA9DCHWtvU9VkF1AlIaUUpRoFU3oA2gWR0Bo1/rMTviMdX2UKGgGaAloD0MID2JnCp2mV8CUhpRSlGgVTdQBaBZHQGjoWiUPhAJ1fZQoaAZoCWgPQwjHvfkNEzdWwJSGlFKUaBVNxAFoFkdAaP74i5d4V3V9lChoBmgJaA9DCGZqErwht15AlIaUUpRoFU3oA2gWR0BpMPFxXGOudX2UKGgGaAloD0MItYe9UMD5Z0CUhpRSlGgVTVcCaBZHQGlIM9bHIZJ1fZQoaAZoCWgPQwiAn3HhQIgewJSGlFKUaBVL/GgWR0BpTnfGdZq3dX2UKGgGaAloD0MIgA2IEFeWRMCUhpRSlGgVTUgBaBZHQGldPKdQO4J1fZQoaAZoCWgPQwisqSwKO89nQJSGlFKUaBVNpwFoFkdAaWqPGyX2NHV9lChoBmgJaA9DCKQ1Bp0QmixAlIaUUpRoFUvBaBZHQGlu7aIvalF1fZQoaAZoCWgPQwiC/de5aeZfQJSGlFKUaBVN6ANoFkdAaapzGxUvPHV9lChoBmgJaA9DCC2zCMVW4FdAlIaUUpRoFU3oA2gWR0Bp6XEXLvCudX2UKGgGaAloD0MIz/dT4yV4akCUhpRSlGgVTQwCaBZHQGoBxVp9JBh1fZQoaAZoCWgPQwj0NjY7UotZQJSGlFKUaBVN6ANoFkdAajT7Uoa1kXV9lChoBmgJaA9DCE0QdR+AtDBAlIaUUpRoFU02AWgWR0BqPUth/iHZdX2UKGgGaAloD0MIm5DWGHSUXkCUhpRSlGgVTegDaBZHQGpz6X8fmtB1fZQoaAZoCWgPQwgvF/GdmKpbQJSGlFKUaBVN6ANoFkdAaqYaYu01InV9lChoBmgJaA9DCEBrfvylpT9AlIaUUpRoFU0oAWgWR0BqriR2bG3ndX2UKGgGaAloD0MIZk8Cm3OGQMCUhpRSlGgVTeIBaBZHQGrD5xzaK1p1fZQoaAZoCWgPQwiWBKipZcdUQJSGlFKUaBVN6ANoFkdAawmEB8x9HHV9lChoBmgJaA9DCINpGD4iRlZAlIaUUpRoFU3oA2gWR0BrQELDye7MdX2UKGgGaAloD0MIX2BWKNIRM0CUhpRSlGgVTZcBaBZHQGtOttQ9A5d1fZQoaAZoCWgPQwjxgLIpV5pJQJSGlFKUaBVN6ANoFkdAa46Iu5BkZ3V9lChoBmgJaA9DCDv+CwQBPFlAlIaUUpRoFU3oA2gWR0BrwM3CKrJbdX2UKGgGaAloD0MI3nGKjuQ7UECUhpRSlGgVTegDaBZHQGvw90zTF2p1fZQoaAZoCWgPQwgYB5eOOQhfwJSGlFKUaBVNNQJoFkdAbA0qo60Y0nV9lChoBmgJaA9DCM3MzMzMvFZAlIaUUpRoFU3oA2gWR0BsW3/tIClrdX2UKGgGaAloD0MIvqCFBIywUkCUhpRSlGgVTegDaBZHQGybT6ab4Jx1fZQoaAZoCWgPQwj/JalMMRJSQJSGlFKUaBVN6ANoFkdAbO4L6UJOWXV9lChoBmgJaA9DCGST/IhfgUJAlIaUUpRoFU3oA2gWR0BtKzXOGCZndX2UKGgGaAloD0MI9HAC02mNQMCUhpRSlGgVTUYCaBZHQG1BdQwblzV1fZQoaAZoCWgPQwjja88sCfpbwJSGlFKUaBVN4AFoFkdAbVhluFYdQ3V9lChoBmgJaA9DCP/MID6wmVNAlIaUUpRoFU3oA2gWR0Btsn6sQumKdX2UKGgGaAloD0MIyThGskdsTcCUhpRSlGgVTQsCaBZHQG3FbqIJqqR1fZQoaAZoCWgPQwjrNxPThUpXwJSGlFKUaBVNGQFoFkdAbcxHLidauHV9lChoBmgJaA9DCFdgyOpWkz7AlIaUUpRoFU3oA2gWR0BuDigRK6FudX2UKGgGaAloD0MIxr5k48GBWUCUhpRSlGgVTeQCaBZHQG4s5ooNNJx1fZQoaAZoCWgPQwiaJmw/GXMnwJSGlFKUaBVN8gFoFkdAbkWldkauOnV9lChoBmgJaA9DCIMyjSaXcmJAlIaUUpRoFU07AmgWR0BuWCtknTiLdX2UKGgGaAloD0MIVfoJZ7fHUkCUhpRSlGgVTegDaBZHQG6UdYwIt191fZQoaAZoCWgPQwiK5ZZWQ2ROQJSGlFKUaBVN6ANoFkdAbr9TYNAkcHV9lChoBmgJaA9DCGwIjsu4iFZAlIaUUpRoFU3oA2gWR0Bu/Jl8PWhAdX2UKGgGaAloD0MIfgG9cOcdV0CUhpRSlGgVTegDaBZHQG85Eq2Bret1fZQoaAZoCWgPQwg8nwH1ZkBfQJSGlFKUaBVNrQJoFkdAb1riKiwjdHV9lChoBmgJaA9DCGCxhovcf0HAlIaUUpRoFU3SAWgWR0BvaHuogmqpdX2UKGgGaAloD0MI1m670FxbUsCUhpRSlGgVTe0BaBZHQG9+BT4tYjl1fZQoaAZoCWgPQwhuowG8BShXQJSGlFKUaBVN6ANoFkdAb8NOMVDa5HV9lChoBmgJaA9DCL+bbtkhMFRAlIaUUpRoFU3oA2gWR0Bv/DNbC79RdX2UKGgGaAloD0MIoFBPH4FNWUCUhpRSlGgVTegDaBZHQHAcQzch1T11fZQoaAZoCWgPQwg5tTNMbWxRQJSGlFKUaBVN6ANoFkdAcDdcpb2US3V9lChoBmgJaA9DCPEvgsZMK11AlIaUUpRoFU3oA2gWR0BwV80+C9RKdX2UKGgGaAloD0MIkrBvJxFsXMCUhpRSlGgVTZ0CaBZHQHBpuDvmYBx1fZQoaAZoCWgPQwgIza57K/RHQJSGlFKUaBVN6ANoFkdAcIy6dUbT+nV9lChoBmgJaA9DCMVVZd8VkFLAlIaUUpRoFU0QAmgWR0BwnDK6nR9gdX2UKGgGaAloD0MIvJNPj23BY0CUhpRSlGgVTXkCaBZHQHCq5dnkDIR1fZQoaAZoCWgPQwgmqrcGtpZoQJSGlFKUaBVNEAJoFkdAcLnXnhbW3HV9lChoBmgJaA9DCCZtqu6RNFFAlIaUUpRoFU3oA2gWR0Bw1SwiaAnVdX2UKGgGaAloD0MIMZqV7UP5UECUhpRSlGgVTegDaBZHQHD6o+4b0e51fZQoaAZoCWgPQwj+JhQi4KVXQJSGlFKUaBVN6ANoFkdAcRuF/x2B8XV9lChoBmgJaA9DCEFn0qbqYELAlIaUUpRoFU3HAWgWR0BxIpe5WilBdX2UKGgGaAloD0MI4UbKFknEUkCUhpRSlGgVTegDaBZHQHFGZxiobXJ1fZQoaAZoCWgPQwgGLo81IxM7wJSGlFKUaBVN6gFoFkdAcVODCP6sQ3V9lChoBmgJaA9DCFN6ppcYtVDAlIaUUpRoFU0nAmgWR0BxXmaz/p+udX2UKGgGaAloD0MIWMaGbvbgUUCUhpRSlGgVTegDaBZHQHF7klJHy3F1fZQoaAZoCWgPQwgbR6zFp/dWQJSGlFKUaBVN6ANoFkdAcZtwyZa3Z3V9lChoBmgJaA9DCFcHQNzV3FVAlIaUUpRoFU3oA2gWR0BxuKOtGNJfdX2UKGgGaAloD0MIwqT4+ISpZECUhpRSlGgVTUQCaBZHQHHLfuogmqp1fZQoaAZoCWgPQwhzSdV2E9xYQJSGlFKUaBVN6ANoFkdAce0j8k2P1nV9lChoBmgJaA9DCJT1m4npZFxAlIaUUpRoFU3oA2gWR0ByDoNoakyldWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 784,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a9493acfb4ae139e4c6dc7ea10a797a905595f7f5fac2d9242a15221f485f5c
|
3 |
+
size 84573
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2636c911247d71e54f51a64f923c36cdc694be5c366bcd9f4aed875a2287108
|
3 |
+
size 43073
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-4.15.0-45-generic-x86_64-with-glibc2.27 #48~16.04.1-Ubuntu SMP Tue Jan 29 18:03:48 UTC 2019
|
2 |
+
Python: 3.8.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9142416596a655c1f973d46c8d48c8f7d9fecd56377d3bf0204c6a681c7c68d
|
3 |
+
size 266507
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -48.586247615281174, "std_reward": 23.44021207895986, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T15:13:56.428139"}
|