File size: 1,350 Bytes
e9c73a5 7051cf2 6bd904b 3766d00 6bd904b 4f362c5 6bd904b 3766d00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
license: apache-2.0
language:
- ar
---
The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/).
The following are the AraRoBERTa seven dialectal variations:
* AraRoBERTa-SA: Saudi Arabia (SA) dialect.
* AraRoBERTa-EGY: Egypt (EGY) dialect.
* AraRoBERTa-KU: Kuwait (KU) dialect.
* AraRoBERTa-OM: Oman (OM) dialect.
* AraRoBERTa-LB: Lebanon (LB) dialect.
* AraRoBERTa-JO: Jordan (JO) dialect.
* AraRoBERTa-DZ: Algeria (DZ) dialect
# When using the model, please cite our paper:
```python
@inproceedings{alyami-al-zaidy-2022-weakly,
title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models",
author = "AlYami, Reem and Al-Zaidy, Rabah",
booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wanlp-1.24",
pages = "260--272",
}
```
# Contact
**Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <reem.yami@kfupm.edu.sa> | <yami.m.reem@gmail.com>
|