File size: 840 Bytes
52a5033 be0c166 42aabcc 52a5033 9a1c01d 52a5033 42aabcc 52a5033 42aabcc 52a5033 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
from typing import Dict, List, Any
from diffusers import DiffusionPipeline
import torch
import diffusers
class EndpointHandler():
def __init__(self, path=""):
self.path = path
self.model = "remg1997/dynabench-sdxl10"
self.pipeline = DiffusionPipeline.from_pretrained(self.model, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
self.pipeline = self.pipeline.to("cuda", torch.float16)
def __call__(self, data: Dict[str, Any])-> List[Dict[str, Any]]:
print("Torch version is", torch.__version__)
print("Diffusers version is", diffusers.__version__)
inputs = data.pop("inputs", data)
print("inputs", inputs)
steps = data.pop("steps", 30)
image = self.pipeline(inputs, num_inference_steps = steps)
return [{"image": image}]
|