File size: 3,761 Bytes
d00a20a 1739cb4 d00a20a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
language: en
license: apache-2.0
library_name: transformers
pipeline_tag: text2text-generation
tags:
- text-generation
- formal-language
- grammar-correction
- t5
- english
- text-formalization
model-index:
- name: formal-lang-rxcx-model
results:
- task:
type: text2text-generation
name: formal language correction
metrics:
- type: loss
value: 2.1 # Replace with your actual training loss
name: training_loss
- type: rouge1
value: 0.85 # Replace with your actual ROUGE score
name: rouge1
- type: accuracy
value: 0.82 # Replace with your actual accuracy
name: accuracy
dataset:
name: grammarly/coedit
type: grammarly/coedit
split: train
datasets:
- grammarly/coedit
model-type: t5-base
inference: true
base_model: t5-base
widget:
- text: "make formal: hey whats up"
- text: "make formal: gonna be late for meeting"
- text: "make formal: this is kinda cool project"
extra_gated_prompt: This is a fine-tuned T5 model for converting informal text to formal language.
extra_gated_fields:
Company/Institution: text
Purpose: text
---
# Formal Language T5 Model
This model is fine-tuned from T5-base for formal language correction and text formalization.
## Model Description
- **Model Type:** T5-base fine-tuned
- **Language:** English
- **Task:** Text Formalization and Grammar Correction
- **License:** Apache 2.0
- **Base Model:** t5-base
## Intended Uses & Limitations
### Intended Uses
- Converting informal text to formal language
- Improving text professionalism
- Grammar correction
- Business communication enhancement
- Academic writing improvement
### Limitations
- Works best with English text
- Maximum input length: 128 tokens
- May not preserve specific domain terminology
- Best suited for business and academic contexts
## Usage
```python
from transformers import AutoModelForSeq2SeqGeneration, AutoTokenizer
model = AutoModelForSeq2SeqGeneration.from_pretrained("renix-codex/formal-lang-rxcx-model")
tokenizer = AutoTokenizer.from_pretrained("renix-codex/formal-lang-rxcx-model")
# Example usage
text = "make formal: hey whats up"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs)
formal_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
## Example Inputs and Outputs
| Informal Input | Formal Output |
|----------------|---------------|
| "hey whats up" | "Hello, how are you?" |
| "gonna be late for meeting" | "I will be late for the meeting." |
| "this is kinda cool" | "This is quite impressive." |
## Training
The model was trained on the Grammarly/COEDIT dataset with the following specifications:
- Base Model: T5-base
- Training Hardware: A100 GPU
- Sequence Length: 128 tokens
- Input Format: "make formal: [informal text]"
## License
Apache License 2.0
## Citation
```bibtex
@misc{formal-lang-rxcx-model,
author = {renix-codex},
title = {Formal Language T5 Model},
year = {2024},
publisher = {HuggingFace},
journal = {HuggingFace Model Hub},
url = {https://huggingface.co/renix-codex/formal-lang-rxcx-model}
}
```
## Developer
Model developed by renix-codex
## Ethical Considerations
This model is intended to assist in formal writing while maintaining the original meaning of the text. Users should be aware that:
- The model may alter the tone of personal or culturally specific expressions
- It should be used as a writing aid rather than a replacement for human judgment
- The output should be reviewed for accuracy and appropriateness
## Updates and Versions
Initial Release - February 2024
- Base implementation with T5-base
- Trained on Grammarly/COEDIT dataset
- Optimized for formal language conversion |