update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: distilbert-cord-ner
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# distilbert-cord-ner
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [Geotrend/distilbert-base-en-fr-de-no-da-cased](https://huggingface.co/Geotrend/distilbert-base-en-fr-de-no-da-cased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1670
|
23 |
+
- Precision: 0.9128
|
24 |
+
- Recall: 0.9242
|
25 |
+
- F1: 0.9185
|
26 |
+
- Accuracy: 0.9656
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 113 | 0.1814 | 0.8480 | 0.8618 | 0.8548 | 0.9393 |
|
58 |
+
| No log | 2.0 | 226 | 0.1755 | 0.8669 | 0.9002 | 0.8832 | 0.9427 |
|
59 |
+
| No log | 3.0 | 339 | 0.1499 | 0.8800 | 0.8935 | 0.8867 | 0.9533 |
|
60 |
+
| No log | 4.0 | 452 | 0.1340 | 0.8975 | 0.9079 | 0.9027 | 0.9596 |
|
61 |
+
| 0.1812 | 5.0 | 565 | 0.1553 | 0.8999 | 0.9146 | 0.9072 | 0.9592 |
|
62 |
+
| 0.1812 | 6.0 | 678 | 0.1474 | 0.8961 | 0.9021 | 0.8991 | 0.9562 |
|
63 |
+
| 0.1812 | 7.0 | 791 | 0.1682 | 0.9135 | 0.9223 | 0.9179 | 0.9622 |
|
64 |
+
| 0.1812 | 8.0 | 904 | 0.1663 | 0.8960 | 0.9175 | 0.9066 | 0.9613 |
|
65 |
+
| 0.0199 | 9.0 | 1017 | 0.1753 | 0.9061 | 0.9261 | 0.9160 | 0.9635 |
|
66 |
+
| 0.0199 | 10.0 | 1130 | 0.1670 | 0.9128 | 0.9242 | 0.9185 | 0.9656 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.18.0
|
72 |
+
- Pytorch 1.11.0
|
73 |
+
- Datasets 2.1.0
|
74 |
+
- Tokenizers 0.12.1
|