renjithks commited on
Commit
15f624b
·
1 Parent(s): e7eb125

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -18
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [Geotrend/distilbert-base-en-fr-de-no-da-cased](https://huggingface.co/Geotrend/distilbert-base-en-fr-de-no-da-cased) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.2115
23
- - Precision: 0.9383
24
- - Recall: 0.9345
25
- - F1: 0.9364
26
- - Accuracy: 0.9565
27
 
28
  ## Model description
29
 
@@ -54,21 +54,21 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | No log | 1.0 | 100 | 0.3620 | 0.8830 | 0.8673 | 0.8751 | 0.9167 |
58
- | No log | 2.0 | 200 | 0.2250 | 0.9176 | 0.9094 | 0.9134 | 0.9405 |
59
- | No log | 3.0 | 300 | 0.2174 | 0.9234 | 0.9167 | 0.9200 | 0.9433 |
60
- | No log | 4.0 | 400 | 0.2214 | 0.9213 | 0.9183 | 0.9198 | 0.9428 |
61
- | 0.3742 | 5.0 | 500 | 0.2099 | 0.9241 | 0.9264 | 0.9253 | 0.9474 |
62
- | 0.3742 | 6.0 | 600 | 0.1900 | 0.9412 | 0.9328 | 0.9370 | 0.9597 |
63
- | 0.3742 | 7.0 | 700 | 0.2174 | 0.9318 | 0.9280 | 0.9299 | 0.9515 |
64
- | 0.3742 | 8.0 | 800 | 0.1941 | 0.9360 | 0.9353 | 0.9357 | 0.9584 |
65
- | 0.3742 | 9.0 | 900 | 0.2157 | 0.9368 | 0.9361 | 0.9365 | 0.9565 |
66
- | 0.0315 | 10.0 | 1000 | 0.2115 | 0.9383 | 0.9345 | 0.9364 | 0.9565 |
67
 
68
 
69
  ### Framework versions
70
 
71
- - Transformers 4.19.1
72
- - Pytorch 1.11.0+cu113
73
- - Datasets 2.2.1
74
  - Tokenizers 0.12.1
 
19
 
20
  This model is a fine-tuned version of [Geotrend/distilbert-base-en-fr-de-no-da-cased](https://huggingface.co/Geotrend/distilbert-base-en-fr-de-no-da-cased) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.1641
23
+ - Precision: 0.9489
24
+ - Recall: 0.9430
25
+ - F1: 0.9459
26
+ - Accuracy: 0.9721
27
 
28
  ## Model description
29
 
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 112 | 0.1750 | 0.8720 | 0.8891 | 0.8805 | 0.9446 |
58
+ | No log | 2.0 | 224 | 0.1339 | 0.8804 | 0.9078 | 0.8939 | 0.9515 |
59
+ | No log | 3.0 | 336 | 0.1157 | 0.9315 | 0.9295 | 0.9305 | 0.9666 |
60
+ | No log | 4.0 | 448 | 0.1291 | 0.9269 | 0.9326 | 0.9298 | 0.9666 |
61
+ | 0.2164 | 5.0 | 560 | 0.1400 | 0.9247 | 0.9285 | 0.9266 | 0.9666 |
62
+ | 0.2164 | 6.0 | 672 | 0.1463 | 0.9376 | 0.9347 | 0.9362 | 0.9689 |
63
+ | 0.2164 | 7.0 | 784 | 0.1463 | 0.9327 | 0.9337 | 0.9332 | 0.9694 |
64
+ | 0.2164 | 8.0 | 896 | 0.1711 | 0.9376 | 0.9337 | 0.9356 | 0.9661 |
65
+ | 0.0274 | 9.0 | 1008 | 0.1621 | 0.9421 | 0.9440 | 0.9431 | 0.9735 |
66
+ | 0.0274 | 10.0 | 1120 | 0.1641 | 0.9489 | 0.9430 | 0.9459 | 0.9721 |
67
 
68
 
69
  ### Framework versions
70
 
71
+ - Transformers 4.18.0
72
+ - Pytorch 1.11.0
73
+ - Datasets 2.1.0
74
  - Tokenizers 0.12.1