renjithks commited on
Commit
4dcaf3a
·
1 Parent(s): 2f456da

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -17,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # distilbert-expense-ner
19
 
20
- This model is a fine-tuned version of [Geotrend/distilbert-base-en-fr-de-no-da-cased](https://huggingface.co/Geotrend/distilbert-base-en-fr-de-no-da-cased) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.1641
23
- - Precision: 0.9489
24
- - Recall: 0.9430
25
- - F1: 0.9459
26
- - Accuracy: 0.9721
27
 
28
  ## Model description
29
 
@@ -54,16 +54,16 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | No log | 1.0 | 112 | 0.1750 | 0.8720 | 0.8891 | 0.8805 | 0.9446 |
58
- | No log | 2.0 | 224 | 0.1339 | 0.8804 | 0.9078 | 0.8939 | 0.9515 |
59
- | No log | 3.0 | 336 | 0.1157 | 0.9315 | 0.9295 | 0.9305 | 0.9666 |
60
- | No log | 4.0 | 448 | 0.1291 | 0.9269 | 0.9326 | 0.9298 | 0.9666 |
61
- | 0.2164 | 5.0 | 560 | 0.1400 | 0.9247 | 0.9285 | 0.9266 | 0.9666 |
62
- | 0.2164 | 6.0 | 672 | 0.1463 | 0.9376 | 0.9347 | 0.9362 | 0.9689 |
63
- | 0.2164 | 7.0 | 784 | 0.1463 | 0.9327 | 0.9337 | 0.9332 | 0.9694 |
64
- | 0.2164 | 8.0 | 896 | 0.1711 | 0.9376 | 0.9337 | 0.9356 | 0.9661 |
65
- | 0.0274 | 9.0 | 1008 | 0.1621 | 0.9421 | 0.9440 | 0.9431 | 0.9735 |
66
- | 0.0274 | 10.0 | 1120 | 0.1641 | 0.9489 | 0.9430 | 0.9459 | 0.9721 |
67
 
68
 
69
  ### Framework versions
 
17
 
18
  # distilbert-expense-ner
19
 
20
+ This model is a fine-tuned version of [renjithks/distilbert-cord-ner](https://huggingface.co/renjithks/distilbert-cord-ner) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.2930
23
+ - Precision: 0.5096
24
+ - Recall: 0.4852
25
+ - F1: 0.4971
26
+ - Accuracy: 0.9275
27
 
28
  ## Model description
29
 
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 22 | 0.3635 | 0.2888 | 0.0945 | 0.1424 | 0.8866 |
58
+ | No log | 2.0 | 44 | 0.2795 | 0.3213 | 0.3018 | 0.3113 | 0.8982 |
59
+ | No log | 3.0 | 66 | 0.2432 | 0.4243 | 0.4034 | 0.4136 | 0.9161 |
60
+ | No log | 4.0 | 88 | 0.2446 | 0.4615 | 0.4654 | 0.4635 | 0.9193 |
61
+ | No log | 5.0 | 110 | 0.2410 | 0.5143 | 0.4810 | 0.4971 | 0.9293 |
62
+ | No log | 6.0 | 132 | 0.2598 | 0.5283 | 0.4612 | 0.4925 | 0.9305 |
63
+ | No log | 7.0 | 154 | 0.2963 | 0.5230 | 0.4485 | 0.4829 | 0.9268 |
64
+ | No log | 8.0 | 176 | 0.2753 | 0.4928 | 0.4838 | 0.4883 | 0.9283 |
65
+ | No log | 9.0 | 198 | 0.2897 | 0.5194 | 0.4725 | 0.4948 | 0.9295 |
66
+ | No log | 10.0 | 220 | 0.2930 | 0.5096 | 0.4852 | 0.4971 | 0.9275 |
67
 
68
 
69
  ### Framework versions