model update
Browse files- README.md +33 -33
- analogy.bidirection.json +1 -1
- analogy.forward.json +1 -1
- analogy.reverse.json +1 -1
- classification.json +1 -1
- config.json +1 -1
- relation_mapping.json +0 -0
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -14,7 +14,7 @@ model-index:
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
-
value: 0.
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
@@ -25,7 +25,7 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
@@ -36,7 +36,7 @@ model-index:
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
-
value: 0.
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
@@ -47,7 +47,7 @@ model-index:
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
-
value: 0.
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
@@ -58,7 +58,7 @@ model-index:
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
-
value: 0.
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
@@ -69,7 +69,7 @@ model-index:
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
-
value: 0.
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
@@ -80,7 +80,7 @@ model-index:
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
-
value: 0.
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
@@ -91,7 +91,7 @@ model-index:
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
-
value: 0.
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
@@ -102,7 +102,7 @@ model-index:
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
-
value: 0.
|
106 |
- task:
|
107 |
name: Analogy Questions (NELL-ONE Analogy)
|
108 |
type: multiple-choice-qa
|
@@ -113,7 +113,7 @@ model-index:
|
|
113 |
metrics:
|
114 |
- name: Accuracy
|
115 |
type: accuracy
|
116 |
-
value: 0.
|
117 |
- task:
|
118 |
name: Lexical Relation Classification (BLESS)
|
119 |
type: classification
|
@@ -124,10 +124,10 @@ model-index:
|
|
124 |
metrics:
|
125 |
- name: F1
|
126 |
type: f1
|
127 |
-
value: 0.
|
128 |
- name: F1 (macro)
|
129 |
type: f1_macro
|
130 |
-
value: 0.
|
131 |
- task:
|
132 |
name: Lexical Relation Classification (CogALexV)
|
133 |
type: classification
|
@@ -138,10 +138,10 @@ model-index:
|
|
138 |
metrics:
|
139 |
- name: F1
|
140 |
type: f1
|
141 |
-
value: 0.
|
142 |
- name: F1 (macro)
|
143 |
type: f1_macro
|
144 |
-
value: 0.
|
145 |
- task:
|
146 |
name: Lexical Relation Classification (EVALution)
|
147 |
type: classification
|
@@ -152,10 +152,10 @@ model-index:
|
|
152 |
metrics:
|
153 |
- name: F1
|
154 |
type: f1
|
155 |
-
value: 0.
|
156 |
- name: F1 (macro)
|
157 |
type: f1_macro
|
158 |
-
value: 0.
|
159 |
- task:
|
160 |
name: Lexical Relation Classification (K&H+N)
|
161 |
type: classification
|
@@ -166,10 +166,10 @@ model-index:
|
|
166 |
metrics:
|
167 |
- name: F1
|
168 |
type: f1
|
169 |
-
value: 0.
|
170 |
- name: F1 (macro)
|
171 |
type: f1_macro
|
172 |
-
value: 0.
|
173 |
- task:
|
174 |
name: Lexical Relation Classification (ROOT09)
|
175 |
type: classification
|
@@ -183,7 +183,7 @@ model-index:
|
|
183 |
value: 0.9072391099968662
|
184 |
- name: F1 (macro)
|
185 |
type: f1_macro
|
186 |
-
value: 0.
|
187 |
|
188 |
---
|
189 |
# relbert/relbert-roberta-large-iloob-d-semeval2012
|
@@ -191,23 +191,23 @@ model-index:
|
|
191 |
RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
|
192 |
This model achieves the following results on the relation understanding tasks:
|
193 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/analogy.forward.json)):
|
194 |
-
- Accuracy on SAT (full): 0.
|
195 |
-
- Accuracy on SAT: 0.
|
196 |
-
- Accuracy on BATS: 0.
|
197 |
-
- Accuracy on U2: 0.
|
198 |
-
- Accuracy on U4: 0.
|
199 |
-
- Accuracy on Google: 0.
|
200 |
-
- Accuracy on ConceptNet Analogy: 0.
|
201 |
-
- Accuracy on T-Rex Analogy: 0.
|
202 |
-
- Accuracy on NELL-ONE Analogy: 0.
|
203 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/classification.json)):
|
204 |
-
- Micro F1 score on BLESS: 0.
|
205 |
-
- Micro F1 score on CogALexV: 0.
|
206 |
-
- Micro F1 score on EVALution: 0.
|
207 |
-
- Micro F1 score on K&H+N: 0.
|
208 |
- Micro F1 score on ROOT09: 0.9072391099968662
|
209 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/relation_mapping.json)):
|
210 |
-
- Accuracy on Relation Mapping: 0.
|
211 |
|
212 |
|
213 |
### Usage
|
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
+
value: 0.844484126984127
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.6764705882352942
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.6735905044510386
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
+
value: 0.7926625903279599
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
+
value: 0.968
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
+
value: 0.6052631578947368
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
+
value: 0.6226851851851852
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
+
value: 0.39093959731543626
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
+
value: 0.6612021857923497
|
106 |
- task:
|
107 |
name: Analogy Questions (NELL-ONE Analogy)
|
108 |
type: multiple-choice-qa
|
|
|
113 |
metrics:
|
114 |
- name: Accuracy
|
115 |
type: accuracy
|
116 |
+
value: 0.6416666666666667
|
117 |
- task:
|
118 |
name: Lexical Relation Classification (BLESS)
|
119 |
type: classification
|
|
|
124 |
metrics:
|
125 |
- name: F1
|
126 |
type: f1
|
127 |
+
value: 0.9171312339912611
|
128 |
- name: F1 (macro)
|
129 |
type: f1_macro
|
130 |
+
value: 0.9144771714929822
|
131 |
- task:
|
132 |
name: Lexical Relation Classification (CogALexV)
|
133 |
type: classification
|
|
|
138 |
metrics:
|
139 |
- name: F1
|
140 |
type: f1
|
141 |
+
value: 0.8455399061032864
|
142 |
- name: F1 (macro)
|
143 |
type: f1_macro
|
144 |
+
value: 0.6723727069325071
|
145 |
- task:
|
146 |
name: Lexical Relation Classification (EVALution)
|
147 |
type: classification
|
|
|
152 |
metrics:
|
153 |
- name: F1
|
154 |
type: f1
|
155 |
+
value: 0.6793066088840737
|
156 |
- name: F1 (macro)
|
157 |
type: f1_macro
|
158 |
+
value: 0.6676508193568021
|
159 |
- task:
|
160 |
name: Lexical Relation Classification (K&H+N)
|
161 |
type: classification
|
|
|
166 |
metrics:
|
167 |
- name: F1
|
168 |
type: f1
|
169 |
+
value: 0.95875356472143
|
170 |
- name: F1 (macro)
|
171 |
type: f1_macro
|
172 |
+
value: 0.8812996852310372
|
173 |
- task:
|
174 |
name: Lexical Relation Classification (ROOT09)
|
175 |
type: classification
|
|
|
183 |
value: 0.9072391099968662
|
184 |
- name: F1 (macro)
|
185 |
type: f1_macro
|
186 |
+
value: 0.9041555105317078
|
187 |
|
188 |
---
|
189 |
# relbert/relbert-roberta-large-iloob-d-semeval2012
|
|
|
191 |
RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
|
192 |
This model achieves the following results on the relation understanding tasks:
|
193 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/analogy.forward.json)):
|
194 |
+
- Accuracy on SAT (full): 0.6764705882352942
|
195 |
+
- Accuracy on SAT: 0.6735905044510386
|
196 |
+
- Accuracy on BATS: 0.7926625903279599
|
197 |
+
- Accuracy on U2: 0.6052631578947368
|
198 |
+
- Accuracy on U4: 0.6226851851851852
|
199 |
+
- Accuracy on Google: 0.968
|
200 |
+
- Accuracy on ConceptNet Analogy: 0.39093959731543626
|
201 |
+
- Accuracy on T-Rex Analogy: 0.6612021857923497
|
202 |
+
- Accuracy on NELL-ONE Analogy: 0.6416666666666667
|
203 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/classification.json)):
|
204 |
+
- Micro F1 score on BLESS: 0.9171312339912611
|
205 |
+
- Micro F1 score on CogALexV: 0.8455399061032864
|
206 |
+
- Micro F1 score on EVALution: 0.6793066088840737
|
207 |
+
- Micro F1 score on K&H+N: 0.95875356472143
|
208 |
- Micro F1 score on ROOT09: 0.9072391099968662
|
209 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/relation_mapping.json)):
|
210 |
+
- Accuracy on Relation Mapping: 0.844484126984127
|
211 |
|
212 |
|
213 |
### Usage
|
analogy.bidirection.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"sat_full/test": 0.
|
|
|
1 |
+
{"sat_full/test": 0.7085561497326203, "sat/test": 0.7091988130563798, "u2/test": 0.6666666666666666, "u4/test": 0.6666666666666666, "google/test": 0.978, "bats/test": 0.8293496386881601, "t_rex_relational_similarity/test": 0.6612021857923497, "conceptnet_relational_similarity/test": 0.4236577181208054, "nell_relational_similarity/test": 0.735, "sat/validation": 0.7027027027027027, "u2/validation": 0.625, "u4/validation": 0.6458333333333334, "google/validation": 1.0, "bats/validation": 0.8793969849246231, "semeval2012_relational_similarity/validation": 0.7215189873417721, "t_rex_relational_similarity/validation": 0.3165322580645161, "conceptnet_relational_similarity/validation": 0.3597122302158273, "nell_relational_similarity/validation": 0.6475}
|
analogy.forward.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"semeval2012_relational_similarity/validation": 0.
|
|
|
1 |
+
{"semeval2012_relational_similarity/validation": 0.759493670886076, "sat_full/test": 0.6764705882352942, "sat/test": 0.6735905044510386, "u2/test": 0.6052631578947368, "u4/test": 0.6226851851851852, "google/test": 0.968, "bats/test": 0.7926625903279599, "t_rex_relational_similarity/test": 0.6612021857923497, "conceptnet_relational_similarity/test": 0.39093959731543626, "nell_relational_similarity/test": 0.6416666666666667, "sat/validation": 0.7027027027027027, "u2/validation": 0.5833333333333334, "u4/validation": 0.5416666666666666, "google/validation": 1.0, "bats/validation": 0.8140703517587939, "t_rex_relational_similarity/validation": 0.3084677419354839, "conceptnet_relational_similarity/validation": 0.3300359712230216, "nell_relational_similarity/validation": 0.6125}
|
analogy.reverse.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"sat_full/test": 0.
|
|
|
1 |
+
{"sat_full/test": 0.6256684491978609, "sat/test": 0.6409495548961425, "u2/test": 0.6535087719298246, "u4/test": 0.6620370370370371, "google/test": 0.96, "bats/test": 0.8148971650917176, "t_rex_relational_similarity/test": 0.6284153005464481, "conceptnet_relational_similarity/test": 0.3859060402684564, "nell_relational_similarity/test": 0.71, "sat/validation": 0.4864864864864865, "u2/validation": 0.625, "u4/validation": 0.6875, "google/validation": 1.0, "bats/validation": 0.8542713567839196, "semeval2012_relational_similarity/validation": 0.5949367088607594, "t_rex_relational_similarity/validation": 0.2963709677419355, "conceptnet_relational_similarity/validation": 0.31744604316546765, "nell_relational_similarity/validation": 0.655}
|
classification.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.
|
|
|
1 |
+
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9171312339912611, "test/f1_macro": 0.9144771714929822, "test/f1_micro": 0.9171312339912611, "test/p_macro": 0.9140990494403654, "test/p_micro": 0.9171312339912611, "test/r_macro": 0.9153113450496887, "test/r_micro": 0.9171312339912611}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8455399061032863, "test/f1_macro": 0.6723727069325071, "test/f1_micro": 0.8455399061032864, "test/p_macro": 0.6945535744714355, "test/p_micro": 0.8455399061032863, "test/r_macro": 0.6549786745504992, "test/r_micro": 0.8455399061032863}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6793066088840737, "test/f1_macro": 0.6676508193568021, "test/f1_micro": 0.6793066088840737, "test/p_macro": 0.6791394688186779, "test/p_micro": 0.6793066088840737, "test/r_macro": 0.6641670647971617, "test/r_micro": 0.6793066088840737}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.95875356472143, "test/f1_macro": 0.8812996852310372, "test/f1_micro": 0.95875356472143, "test/p_macro": 0.9026237933224279, "test/p_micro": 0.95875356472143, "test/r_macro": 0.8634287514873775, "test/r_micro": 0.95875356472143}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9072391099968662, "test/f1_macro": 0.9041555105317078, "test/f1_micro": 0.9072391099968662, "test/p_macro": 0.9055653859573632, "test/p_micro": 0.9072391099968662, "test/r_macro": 0.9033586700399313, "test/r_micro": 0.9072391099968662}}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "roberta-large",
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
relation_mapping.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
-
"name_or_path": "
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
+
"name_or_path": "roberta-large",
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|