asahi417 commited on
Commit
034f2d9
1 Parent(s): 0714697

model update

Browse files
README.md CHANGED
@@ -14,7 +14,7 @@ model-index:
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
- value: 0.8125396825396826
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
@@ -25,7 +25,7 @@ model-index:
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.6844919786096256
29
  - task:
30
  name: Analogy Questions (SAT)
31
  type: multiple-choice-qa
@@ -36,7 +36,7 @@ model-index:
36
  metrics:
37
  - name: Accuracy
38
  type: accuracy
39
- value: 0.685459940652819
40
  - task:
41
  name: Analogy Questions (BATS)
42
  type: multiple-choice-qa
@@ -47,7 +47,7 @@ model-index:
47
  metrics:
48
  - name: Accuracy
49
  type: accuracy
50
- value: 0.7804335742078933
51
  - task:
52
  name: Analogy Questions (Google)
53
  type: multiple-choice-qa
@@ -58,7 +58,7 @@ model-index:
58
  metrics:
59
  - name: Accuracy
60
  type: accuracy
61
- value: 0.96
62
  - task:
63
  name: Analogy Questions (U2)
64
  type: multiple-choice-qa
@@ -69,7 +69,7 @@ model-index:
69
  metrics:
70
  - name: Accuracy
71
  type: accuracy
72
- value: 0.6271929824561403
73
  - task:
74
  name: Analogy Questions (U4)
75
  type: multiple-choice-qa
@@ -80,7 +80,7 @@ model-index:
80
  metrics:
81
  - name: Accuracy
82
  type: accuracy
83
- value: 0.5995370370370371
84
  - task:
85
  name: Analogy Questions (ConceptNet Analogy)
86
  type: multiple-choice-qa
@@ -91,7 +91,7 @@ model-index:
91
  metrics:
92
  - name: Accuracy
93
  type: accuracy
94
- value: 0.4052013422818792
95
  - task:
96
  name: Analogy Questions (TREX Analogy)
97
  type: multiple-choice-qa
@@ -102,7 +102,7 @@ model-index:
102
  metrics:
103
  - name: Accuracy
104
  type: accuracy
105
- value: 0.6229508196721312
106
  - task:
107
  name: Analogy Questions (NELL-ONE Analogy)
108
  type: multiple-choice-qa
@@ -113,7 +113,7 @@ model-index:
113
  metrics:
114
  - name: Accuracy
115
  type: accuracy
116
- value: 0.6283333333333333
117
  - task:
118
  name: Lexical Relation Classification (BLESS)
119
  type: classification
@@ -124,10 +124,10 @@ model-index:
124
  metrics:
125
  - name: F1
126
  type: f1
127
- value: 0.9168298930239566
128
  - name: F1 (macro)
129
  type: f1_macro
130
- value: 0.9141485326840691
131
  - task:
132
  name: Lexical Relation Classification (CogALexV)
133
  type: classification
@@ -138,10 +138,10 @@ model-index:
138
  metrics:
139
  - name: F1
140
  type: f1
141
- value: 0.8448356807511737
142
  - name: F1 (macro)
143
  type: f1_macro
144
- value: 0.6752034380630019
145
  - task:
146
  name: Lexical Relation Classification (EVALution)
147
  type: classification
@@ -152,10 +152,10 @@ model-index:
152
  metrics:
153
  - name: F1
154
  type: f1
155
- value: 0.6722643553629469
156
  - name: F1 (macro)
157
  type: f1_macro
158
- value: 0.6535138350302286
159
  - task:
160
  name: Lexical Relation Classification (K&H+N)
161
  type: classification
@@ -166,10 +166,10 @@ model-index:
166
  metrics:
167
  - name: F1
168
  type: f1
169
- value: 0.9599360089031092
170
  - name: F1 (macro)
171
  type: f1_macro
172
- value: 0.8799570036729836
173
  - task:
174
  name: Lexical Relation Classification (ROOT09)
175
  type: classification
@@ -183,7 +183,7 @@ model-index:
183
  value: 0.9072391099968662
184
  - name: F1 (macro)
185
  type: f1_macro
186
- value: 0.9048168410533853
187
 
188
  ---
189
  # relbert/relbert-roberta-large-iloob-d-semeval2012
@@ -191,23 +191,23 @@ model-index:
191
  RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
192
  This model achieves the following results on the relation understanding tasks:
193
  - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/analogy.forward.json)):
194
- - Accuracy on SAT (full): 0.6844919786096256
195
- - Accuracy on SAT: 0.685459940652819
196
- - Accuracy on BATS: 0.7804335742078933
197
- - Accuracy on U2: 0.6271929824561403
198
- - Accuracy on U4: 0.5995370370370371
199
- - Accuracy on Google: 0.96
200
- - Accuracy on ConceptNet Analogy: 0.4052013422818792
201
- - Accuracy on T-Rex Analogy: 0.6229508196721312
202
- - Accuracy on NELL-ONE Analogy: 0.6283333333333333
203
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/classification.json)):
204
- - Micro F1 score on BLESS: 0.9168298930239566
205
- - Micro F1 score on CogALexV: 0.8448356807511737
206
- - Micro F1 score on EVALution: 0.6722643553629469
207
- - Micro F1 score on K&H+N: 0.9599360089031092
208
  - Micro F1 score on ROOT09: 0.9072391099968662
209
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/relation_mapping.json)):
210
- - Accuracy on Relation Mapping: 0.8125396825396826
211
 
212
 
213
  ### Usage
 
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
+ value: 0.844484126984127
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.6764705882352942
29
  - task:
30
  name: Analogy Questions (SAT)
31
  type: multiple-choice-qa
 
36
  metrics:
37
  - name: Accuracy
38
  type: accuracy
39
+ value: 0.6735905044510386
40
  - task:
41
  name: Analogy Questions (BATS)
42
  type: multiple-choice-qa
 
47
  metrics:
48
  - name: Accuracy
49
  type: accuracy
50
+ value: 0.7926625903279599
51
  - task:
52
  name: Analogy Questions (Google)
53
  type: multiple-choice-qa
 
58
  metrics:
59
  - name: Accuracy
60
  type: accuracy
61
+ value: 0.968
62
  - task:
63
  name: Analogy Questions (U2)
64
  type: multiple-choice-qa
 
69
  metrics:
70
  - name: Accuracy
71
  type: accuracy
72
+ value: 0.6052631578947368
73
  - task:
74
  name: Analogy Questions (U4)
75
  type: multiple-choice-qa
 
80
  metrics:
81
  - name: Accuracy
82
  type: accuracy
83
+ value: 0.6226851851851852
84
  - task:
85
  name: Analogy Questions (ConceptNet Analogy)
86
  type: multiple-choice-qa
 
91
  metrics:
92
  - name: Accuracy
93
  type: accuracy
94
+ value: 0.39093959731543626
95
  - task:
96
  name: Analogy Questions (TREX Analogy)
97
  type: multiple-choice-qa
 
102
  metrics:
103
  - name: Accuracy
104
  type: accuracy
105
+ value: 0.6612021857923497
106
  - task:
107
  name: Analogy Questions (NELL-ONE Analogy)
108
  type: multiple-choice-qa
 
113
  metrics:
114
  - name: Accuracy
115
  type: accuracy
116
+ value: 0.6416666666666667
117
  - task:
118
  name: Lexical Relation Classification (BLESS)
119
  type: classification
 
124
  metrics:
125
  - name: F1
126
  type: f1
127
+ value: 0.9171312339912611
128
  - name: F1 (macro)
129
  type: f1_macro
130
+ value: 0.9144771714929822
131
  - task:
132
  name: Lexical Relation Classification (CogALexV)
133
  type: classification
 
138
  metrics:
139
  - name: F1
140
  type: f1
141
+ value: 0.8455399061032864
142
  - name: F1 (macro)
143
  type: f1_macro
144
+ value: 0.6723727069325071
145
  - task:
146
  name: Lexical Relation Classification (EVALution)
147
  type: classification
 
152
  metrics:
153
  - name: F1
154
  type: f1
155
+ value: 0.6793066088840737
156
  - name: F1 (macro)
157
  type: f1_macro
158
+ value: 0.6676508193568021
159
  - task:
160
  name: Lexical Relation Classification (K&H+N)
161
  type: classification
 
166
  metrics:
167
  - name: F1
168
  type: f1
169
+ value: 0.95875356472143
170
  - name: F1 (macro)
171
  type: f1_macro
172
+ value: 0.8812996852310372
173
  - task:
174
  name: Lexical Relation Classification (ROOT09)
175
  type: classification
 
183
  value: 0.9072391099968662
184
  - name: F1 (macro)
185
  type: f1_macro
186
+ value: 0.9041555105317078
187
 
188
  ---
189
  # relbert/relbert-roberta-large-iloob-d-semeval2012
 
191
  RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
192
  This model achieves the following results on the relation understanding tasks:
193
  - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/analogy.forward.json)):
194
+ - Accuracy on SAT (full): 0.6764705882352942
195
+ - Accuracy on SAT: 0.6735905044510386
196
+ - Accuracy on BATS: 0.7926625903279599
197
+ - Accuracy on U2: 0.6052631578947368
198
+ - Accuracy on U4: 0.6226851851851852
199
+ - Accuracy on Google: 0.968
200
+ - Accuracy on ConceptNet Analogy: 0.39093959731543626
201
+ - Accuracy on T-Rex Analogy: 0.6612021857923497
202
+ - Accuracy on NELL-ONE Analogy: 0.6416666666666667
203
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/classification.json)):
204
+ - Micro F1 score on BLESS: 0.9171312339912611
205
+ - Micro F1 score on CogALexV: 0.8455399061032864
206
+ - Micro F1 score on EVALution: 0.6793066088840737
207
+ - Micro F1 score on K&H+N: 0.95875356472143
208
  - Micro F1 score on ROOT09: 0.9072391099968662
209
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-iloob-d-semeval2012/raw/main/relation_mapping.json)):
210
+ - Accuracy on Relation Mapping: 0.844484126984127
211
 
212
 
213
  ### Usage
analogy.bidirection.json CHANGED
@@ -1 +1 @@
1
- {"sat_full/test": 0.6871657754010695, "sat/test": 0.6913946587537092, "u2/test": 0.6622807017543859, "u4/test": 0.6527777777777778, "google/test": 0.968, "bats/test": 0.8349082823790995, "t_rex_relational_similarity/test": 0.6338797814207651, "conceptnet_relational_similarity/test": 0.45302013422818793, "nell_relational_similarity/test": 0.7333333333333333, "sat/validation": 0.6486486486486487, "u2/validation": 0.625, "u4/validation": 0.6875, "google/validation": 1.0, "bats/validation": 0.8944723618090452, "semeval2012_relational_similarity/validation": 0.7215189873417721, "t_rex_relational_similarity/validation": 0.31048387096774194, "conceptnet_relational_similarity/validation": 0.36151079136690645, "nell_relational_similarity/validation": 0.635}
 
1
+ {"sat_full/test": 0.7085561497326203, "sat/test": 0.7091988130563798, "u2/test": 0.6666666666666666, "u4/test": 0.6666666666666666, "google/test": 0.978, "bats/test": 0.8293496386881601, "t_rex_relational_similarity/test": 0.6612021857923497, "conceptnet_relational_similarity/test": 0.4236577181208054, "nell_relational_similarity/test": 0.735, "sat/validation": 0.7027027027027027, "u2/validation": 0.625, "u4/validation": 0.6458333333333334, "google/validation": 1.0, "bats/validation": 0.8793969849246231, "semeval2012_relational_similarity/validation": 0.7215189873417721, "t_rex_relational_similarity/validation": 0.3165322580645161, "conceptnet_relational_similarity/validation": 0.3597122302158273, "nell_relational_similarity/validation": 0.6475}
analogy.forward.json CHANGED
@@ -1 +1 @@
1
- {"semeval2012_relational_similarity/validation": 0.6962025316455697, "sat_full/test": 0.6844919786096256, "sat/test": 0.685459940652819, "u2/test": 0.6271929824561403, "u4/test": 0.5995370370370371, "google/test": 0.96, "bats/test": 0.7804335742078933, "t_rex_relational_similarity/test": 0.6229508196721312, "conceptnet_relational_similarity/test": 0.4052013422818792, "nell_relational_similarity/test": 0.6283333333333333, "sat/validation": 0.6756756756756757, "u2/validation": 0.4166666666666667, "u4/validation": 0.5208333333333334, "google/validation": 1.0, "bats/validation": 0.8391959798994975, "t_rex_relational_similarity/validation": 0.2903225806451613, "conceptnet_relational_similarity/validation": 0.32464028776978415, "nell_relational_similarity/validation": 0.6025}
 
1
+ {"semeval2012_relational_similarity/validation": 0.759493670886076, "sat_full/test": 0.6764705882352942, "sat/test": 0.6735905044510386, "u2/test": 0.6052631578947368, "u4/test": 0.6226851851851852, "google/test": 0.968, "bats/test": 0.7926625903279599, "t_rex_relational_similarity/test": 0.6612021857923497, "conceptnet_relational_similarity/test": 0.39093959731543626, "nell_relational_similarity/test": 0.6416666666666667, "sat/validation": 0.7027027027027027, "u2/validation": 0.5833333333333334, "u4/validation": 0.5416666666666666, "google/validation": 1.0, "bats/validation": 0.8140703517587939, "t_rex_relational_similarity/validation": 0.3084677419354839, "conceptnet_relational_similarity/validation": 0.3300359712230216, "nell_relational_similarity/validation": 0.6125}
analogy.reverse.json CHANGED
@@ -1 +1 @@
1
- {"sat_full/test": 0.6176470588235294, "sat/test": 0.6231454005934718, "u2/test": 0.6271929824561403, "u4/test": 0.6365740740740741, "google/test": 0.96, "bats/test": 0.8176764869371873, "t_rex_relational_similarity/test": 0.6338797814207651, "conceptnet_relational_similarity/test": 0.4077181208053691, "nell_relational_similarity/test": 0.7166666666666667, "sat/validation": 0.5675675675675675, "u2/validation": 0.7083333333333334, "u4/validation": 0.6458333333333334, "google/validation": 0.98, "bats/validation": 0.8743718592964824, "semeval2012_relational_similarity/validation": 0.6455696202531646, "t_rex_relational_similarity/validation": 0.2782258064516129, "conceptnet_relational_similarity/validation": 0.3471223021582734, "nell_relational_similarity/validation": 0.65}
 
1
+ {"sat_full/test": 0.6256684491978609, "sat/test": 0.6409495548961425, "u2/test": 0.6535087719298246, "u4/test": 0.6620370370370371, "google/test": 0.96, "bats/test": 0.8148971650917176, "t_rex_relational_similarity/test": 0.6284153005464481, "conceptnet_relational_similarity/test": 0.3859060402684564, "nell_relational_similarity/test": 0.71, "sat/validation": 0.4864864864864865, "u2/validation": 0.625, "u4/validation": 0.6875, "google/validation": 1.0, "bats/validation": 0.8542713567839196, "semeval2012_relational_similarity/validation": 0.5949367088607594, "t_rex_relational_similarity/validation": 0.2963709677419355, "conceptnet_relational_similarity/validation": 0.31744604316546765, "nell_relational_similarity/validation": 0.655}
classification.json CHANGED
@@ -1 +1 @@
1
- {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9168298930239566, "test/f1_macro": 0.9141485326840691, "test/f1_micro": 0.9168298930239566, "test/p_macro": 0.9122332727807994, "test/p_micro": 0.9168298930239566, "test/r_macro": 0.9167520407835513, "test/r_micro": 0.9168298930239566}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8448356807511737, "test/f1_macro": 0.6752034380630019, "test/f1_micro": 0.8448356807511737, "test/p_macro": 0.71054646454147, "test/p_micro": 0.8448356807511737, "test/r_macro": 0.6473529883092849, "test/r_micro": 0.8448356807511737}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6722643553629469, "test/f1_macro": 0.6535138350302286, "test/f1_micro": 0.6722643553629469, "test/p_macro": 0.6510526375182459, "test/p_micro": 0.6722643553629469, "test/r_macro": 0.6584808338479788, "test/r_micro": 0.6722643553629469}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9599360089031092, "test/f1_macro": 0.8799570036729836, "test/f1_micro": 0.9599360089031092, "test/p_macro": 0.8756723615945982, "test/p_micro": 0.9599360089031092, "test/r_macro": 0.8845880939554538, "test/r_micro": 0.9599360089031092}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9072391099968662, "test/f1_macro": 0.9048168410533853, "test/f1_micro": 0.9072391099968662, "test/p_macro": 0.904024414810284, "test/p_micro": 0.9072391099968662, "test/r_macro": 0.9059444075934731, "test/r_micro": 0.9072391099968662}}
 
1
+ {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9171312339912611, "test/f1_macro": 0.9144771714929822, "test/f1_micro": 0.9171312339912611, "test/p_macro": 0.9140990494403654, "test/p_micro": 0.9171312339912611, "test/r_macro": 0.9153113450496887, "test/r_micro": 0.9171312339912611}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8455399061032863, "test/f1_macro": 0.6723727069325071, "test/f1_micro": 0.8455399061032864, "test/p_macro": 0.6945535744714355, "test/p_micro": 0.8455399061032863, "test/r_macro": 0.6549786745504992, "test/r_micro": 0.8455399061032863}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6793066088840737, "test/f1_macro": 0.6676508193568021, "test/f1_micro": 0.6793066088840737, "test/p_macro": 0.6791394688186779, "test/p_micro": 0.6793066088840737, "test/r_macro": 0.6641670647971617, "test/r_micro": 0.6793066088840737}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.95875356472143, "test/f1_macro": 0.8812996852310372, "test/f1_micro": 0.95875356472143, "test/p_macro": 0.9026237933224279, "test/p_micro": 0.95875356472143, "test/r_macro": 0.8634287514873775, "test/r_micro": 0.95875356472143}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9072391099968662, "test/f1_macro": 0.9041555105317078, "test/f1_micro": 0.9072391099968662, "test/p_macro": 0.9055653859573632, "test/p_micro": 0.9072391099968662, "test/r_macro": 0.9033586700399313, "test/r_micro": 0.9072391099968662}}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "relbert_output/ckpt/iloob_semeval2012/template-d/model",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "roberta-large",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
relation_mapping.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "relbert_output/ckpt/iloob_semeval2012/template-d/model",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "roberta-large",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,