Sentence Similarity
sentence-transformers
PyTorch
Transformers
English
t5
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
prompt-retrieval
text-reranking
feature-extraction
English
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
Eval Results
Inference Endpoints
use official model instead
Browse files- 2_Dense/pytorch_model.bin +1 -1
- README.md +2579 -16
- config.json +1 -1
- pytorch_model.bin +1 -1
- tokenizer_config.json +1 -1
2_Dense/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3146603
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fea898f34b36bf88914400ddd80005cfac4463c76fff37cabef719b3b58a4ad
|
3 |
size 3146603
|
README.md
CHANGED
@@ -1,47 +1,2610 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
-
language: en
|
4 |
-
license: apache-2.0
|
5 |
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- sentence-transformers
|
7 |
- feature-extraction
|
8 |
- sentence-similarity
|
9 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
#
|
13 |
-
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Installation
|
18 |
```bash
|
19 |
-
|
20 |
-
cd sentence-transformers
|
21 |
-
pip install -e .
|
22 |
```
|
23 |
|
24 |
## Compute your customized embeddings
|
25 |
Then you can use the model like this to calculate domain-specific and task-aware embeddings:
|
26 |
```python
|
27 |
-
from
|
|
|
28 |
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
|
29 |
-
instruction = "Represent the Science title
|
30 |
-
|
31 |
-
embeddings = model.encode([[instruction,sentence,0]])
|
32 |
print(embeddings)
|
33 |
```
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
## Calculate Sentence similarities
|
36 |
You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**.
|
37 |
```python
|
38 |
from sklearn.metrics.pairwise import cosine_similarity
|
39 |
-
sentences_a = [['Represent the Science sentence
|
40 |
-
['Represent the Financial statement
|
41 |
-
sentences_b = [['Represent the Science sentence
|
42 |
-
['Represent the Financial statement
|
43 |
embeddings_a = model.encode(sentences_a)
|
44 |
embeddings_b = model.encode(sentences_b)
|
45 |
similarities = cosine_similarity(embeddings_a,embeddings_b)
|
46 |
print(similarities)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
```
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
|
|
|
|
3 |
tags:
|
4 |
+
- text-embedding
|
5 |
+
- embeddings
|
6 |
+
- information-retrieval
|
7 |
+
- beir
|
8 |
+
- text-classification
|
9 |
+
- language-model
|
10 |
+
- text-clustering
|
11 |
+
- text-semantic-similarity
|
12 |
+
- text-evaluation
|
13 |
+
- prompt-retrieval
|
14 |
+
- text-reranking
|
15 |
- sentence-transformers
|
16 |
- feature-extraction
|
17 |
- sentence-similarity
|
18 |
- transformers
|
19 |
+
- t5
|
20 |
+
- English
|
21 |
+
- Sentence Similarity
|
22 |
+
- natural_questions
|
23 |
+
- ms_marco
|
24 |
+
- fever
|
25 |
+
- hotpot_qa
|
26 |
+
- mteb
|
27 |
+
language: en
|
28 |
+
inference: false
|
29 |
+
license: apache-2.0
|
30 |
+
model-index:
|
31 |
+
- name: final_xl_results
|
32 |
+
results:
|
33 |
+
- task:
|
34 |
+
type: Classification
|
35 |
+
dataset:
|
36 |
+
type: mteb/amazon_counterfactual
|
37 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
38 |
+
config: en
|
39 |
+
split: test
|
40 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
41 |
+
metrics:
|
42 |
+
- type: accuracy
|
43 |
+
value: 85.08955223880596
|
44 |
+
- type: ap
|
45 |
+
value: 52.66066378722476
|
46 |
+
- type: f1
|
47 |
+
value: 79.63340218960269
|
48 |
+
- task:
|
49 |
+
type: Classification
|
50 |
+
dataset:
|
51 |
+
type: mteb/amazon_polarity
|
52 |
+
name: MTEB AmazonPolarityClassification
|
53 |
+
config: default
|
54 |
+
split: test
|
55 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
56 |
+
metrics:
|
57 |
+
- type: accuracy
|
58 |
+
value: 86.542
|
59 |
+
- type: ap
|
60 |
+
value: 81.92695193008987
|
61 |
+
- type: f1
|
62 |
+
value: 86.51466132573681
|
63 |
+
- task:
|
64 |
+
type: Classification
|
65 |
+
dataset:
|
66 |
+
type: mteb/amazon_reviews_multi
|
67 |
+
name: MTEB AmazonReviewsClassification (en)
|
68 |
+
config: en
|
69 |
+
split: test
|
70 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
71 |
+
metrics:
|
72 |
+
- type: accuracy
|
73 |
+
value: 42.964
|
74 |
+
- type: f1
|
75 |
+
value: 41.43146249774862
|
76 |
+
- task:
|
77 |
+
type: Retrieval
|
78 |
+
dataset:
|
79 |
+
type: arguana
|
80 |
+
name: MTEB ArguAna
|
81 |
+
config: default
|
82 |
+
split: test
|
83 |
+
revision: None
|
84 |
+
metrics:
|
85 |
+
- type: map_at_1
|
86 |
+
value: 29.872
|
87 |
+
- type: map_at_10
|
88 |
+
value: 46.342
|
89 |
+
- type: map_at_100
|
90 |
+
value: 47.152
|
91 |
+
- type: map_at_1000
|
92 |
+
value: 47.154
|
93 |
+
- type: map_at_3
|
94 |
+
value: 41.216
|
95 |
+
- type: map_at_5
|
96 |
+
value: 44.035999999999994
|
97 |
+
- type: mrr_at_1
|
98 |
+
value: 30.939
|
99 |
+
- type: mrr_at_10
|
100 |
+
value: 46.756
|
101 |
+
- type: mrr_at_100
|
102 |
+
value: 47.573
|
103 |
+
- type: mrr_at_1000
|
104 |
+
value: 47.575
|
105 |
+
- type: mrr_at_3
|
106 |
+
value: 41.548
|
107 |
+
- type: mrr_at_5
|
108 |
+
value: 44.425
|
109 |
+
- type: ndcg_at_1
|
110 |
+
value: 29.872
|
111 |
+
- type: ndcg_at_10
|
112 |
+
value: 55.65
|
113 |
+
- type: ndcg_at_100
|
114 |
+
value: 58.88099999999999
|
115 |
+
- type: ndcg_at_1000
|
116 |
+
value: 58.951
|
117 |
+
- type: ndcg_at_3
|
118 |
+
value: 45.0
|
119 |
+
- type: ndcg_at_5
|
120 |
+
value: 50.09
|
121 |
+
- type: precision_at_1
|
122 |
+
value: 29.872
|
123 |
+
- type: precision_at_10
|
124 |
+
value: 8.549
|
125 |
+
- type: precision_at_100
|
126 |
+
value: 0.991
|
127 |
+
- type: precision_at_1000
|
128 |
+
value: 0.1
|
129 |
+
- type: precision_at_3
|
130 |
+
value: 18.658
|
131 |
+
- type: precision_at_5
|
132 |
+
value: 13.669999999999998
|
133 |
+
- type: recall_at_1
|
134 |
+
value: 29.872
|
135 |
+
- type: recall_at_10
|
136 |
+
value: 85.491
|
137 |
+
- type: recall_at_100
|
138 |
+
value: 99.075
|
139 |
+
- type: recall_at_1000
|
140 |
+
value: 99.644
|
141 |
+
- type: recall_at_3
|
142 |
+
value: 55.974000000000004
|
143 |
+
- type: recall_at_5
|
144 |
+
value: 68.35
|
145 |
+
- task:
|
146 |
+
type: Clustering
|
147 |
+
dataset:
|
148 |
+
type: mteb/arxiv-clustering-p2p
|
149 |
+
name: MTEB ArxivClusteringP2P
|
150 |
+
config: default
|
151 |
+
split: test
|
152 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
153 |
+
metrics:
|
154 |
+
- type: v_measure
|
155 |
+
value: 42.452729850641276
|
156 |
+
- task:
|
157 |
+
type: Clustering
|
158 |
+
dataset:
|
159 |
+
type: mteb/arxiv-clustering-s2s
|
160 |
+
name: MTEB ArxivClusteringS2S
|
161 |
+
config: default
|
162 |
+
split: test
|
163 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
164 |
+
metrics:
|
165 |
+
- type: v_measure
|
166 |
+
value: 32.21141846480423
|
167 |
+
- task:
|
168 |
+
type: Reranking
|
169 |
+
dataset:
|
170 |
+
type: mteb/askubuntudupquestions-reranking
|
171 |
+
name: MTEB AskUbuntuDupQuestions
|
172 |
+
config: default
|
173 |
+
split: test
|
174 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
175 |
+
metrics:
|
176 |
+
- type: map
|
177 |
+
value: 65.34710928952622
|
178 |
+
- type: mrr
|
179 |
+
value: 77.61124301983028
|
180 |
+
- task:
|
181 |
+
type: STS
|
182 |
+
dataset:
|
183 |
+
type: mteb/biosses-sts
|
184 |
+
name: MTEB BIOSSES
|
185 |
+
config: default
|
186 |
+
split: test
|
187 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
188 |
+
metrics:
|
189 |
+
- type: cos_sim_spearman
|
190 |
+
value: 84.15312230525639
|
191 |
+
- task:
|
192 |
+
type: Classification
|
193 |
+
dataset:
|
194 |
+
type: mteb/banking77
|
195 |
+
name: MTEB Banking77Classification
|
196 |
+
config: default
|
197 |
+
split: test
|
198 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
199 |
+
metrics:
|
200 |
+
- type: accuracy
|
201 |
+
value: 82.66233766233766
|
202 |
+
- type: f1
|
203 |
+
value: 82.04175284777669
|
204 |
+
- task:
|
205 |
+
type: Clustering
|
206 |
+
dataset:
|
207 |
+
type: mteb/biorxiv-clustering-p2p
|
208 |
+
name: MTEB BiorxivClusteringP2P
|
209 |
+
config: default
|
210 |
+
split: test
|
211 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
212 |
+
metrics:
|
213 |
+
- type: v_measure
|
214 |
+
value: 37.36697339826455
|
215 |
+
- task:
|
216 |
+
type: Clustering
|
217 |
+
dataset:
|
218 |
+
type: mteb/biorxiv-clustering-s2s
|
219 |
+
name: MTEB BiorxivClusteringS2S
|
220 |
+
config: default
|
221 |
+
split: test
|
222 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
223 |
+
metrics:
|
224 |
+
- type: v_measure
|
225 |
+
value: 30.551241447593092
|
226 |
+
- task:
|
227 |
+
type: Retrieval
|
228 |
+
dataset:
|
229 |
+
type: BeIR/cqadupstack
|
230 |
+
name: MTEB CQADupstackAndroidRetrieval
|
231 |
+
config: default
|
232 |
+
split: test
|
233 |
+
revision: None
|
234 |
+
metrics:
|
235 |
+
- type: map_at_1
|
236 |
+
value: 36.797000000000004
|
237 |
+
- type: map_at_10
|
238 |
+
value: 48.46
|
239 |
+
- type: map_at_100
|
240 |
+
value: 49.968
|
241 |
+
- type: map_at_1000
|
242 |
+
value: 50.080000000000005
|
243 |
+
- type: map_at_3
|
244 |
+
value: 44.71
|
245 |
+
- type: map_at_5
|
246 |
+
value: 46.592
|
247 |
+
- type: mrr_at_1
|
248 |
+
value: 45.494
|
249 |
+
- type: mrr_at_10
|
250 |
+
value: 54.747
|
251 |
+
- type: mrr_at_100
|
252 |
+
value: 55.43599999999999
|
253 |
+
- type: mrr_at_1000
|
254 |
+
value: 55.464999999999996
|
255 |
+
- type: mrr_at_3
|
256 |
+
value: 52.361000000000004
|
257 |
+
- type: mrr_at_5
|
258 |
+
value: 53.727000000000004
|
259 |
+
- type: ndcg_at_1
|
260 |
+
value: 45.494
|
261 |
+
- type: ndcg_at_10
|
262 |
+
value: 54.989
|
263 |
+
- type: ndcg_at_100
|
264 |
+
value: 60.096000000000004
|
265 |
+
- type: ndcg_at_1000
|
266 |
+
value: 61.58
|
267 |
+
- type: ndcg_at_3
|
268 |
+
value: 49.977
|
269 |
+
- type: ndcg_at_5
|
270 |
+
value: 51.964999999999996
|
271 |
+
- type: precision_at_1
|
272 |
+
value: 45.494
|
273 |
+
- type: precision_at_10
|
274 |
+
value: 10.558
|
275 |
+
- type: precision_at_100
|
276 |
+
value: 1.6049999999999998
|
277 |
+
- type: precision_at_1000
|
278 |
+
value: 0.203
|
279 |
+
- type: precision_at_3
|
280 |
+
value: 23.796
|
281 |
+
- type: precision_at_5
|
282 |
+
value: 16.881
|
283 |
+
- type: recall_at_1
|
284 |
+
value: 36.797000000000004
|
285 |
+
- type: recall_at_10
|
286 |
+
value: 66.83
|
287 |
+
- type: recall_at_100
|
288 |
+
value: 88.34100000000001
|
289 |
+
- type: recall_at_1000
|
290 |
+
value: 97.202
|
291 |
+
- type: recall_at_3
|
292 |
+
value: 51.961999999999996
|
293 |
+
- type: recall_at_5
|
294 |
+
value: 57.940000000000005
|
295 |
+
- task:
|
296 |
+
type: Retrieval
|
297 |
+
dataset:
|
298 |
+
type: BeIR/cqadupstack
|
299 |
+
name: MTEB CQADupstackEnglishRetrieval
|
300 |
+
config: default
|
301 |
+
split: test
|
302 |
+
revision: None
|
303 |
+
metrics:
|
304 |
+
- type: map_at_1
|
305 |
+
value: 32.597
|
306 |
+
- type: map_at_10
|
307 |
+
value: 43.424
|
308 |
+
- type: map_at_100
|
309 |
+
value: 44.78
|
310 |
+
- type: map_at_1000
|
311 |
+
value: 44.913
|
312 |
+
- type: map_at_3
|
313 |
+
value: 40.315
|
314 |
+
- type: map_at_5
|
315 |
+
value: 41.987
|
316 |
+
- type: mrr_at_1
|
317 |
+
value: 40.382
|
318 |
+
- type: mrr_at_10
|
319 |
+
value: 49.219
|
320 |
+
- type: mrr_at_100
|
321 |
+
value: 49.895
|
322 |
+
- type: mrr_at_1000
|
323 |
+
value: 49.936
|
324 |
+
- type: mrr_at_3
|
325 |
+
value: 46.996
|
326 |
+
- type: mrr_at_5
|
327 |
+
value: 48.231
|
328 |
+
- type: ndcg_at_1
|
329 |
+
value: 40.382
|
330 |
+
- type: ndcg_at_10
|
331 |
+
value: 49.318
|
332 |
+
- type: ndcg_at_100
|
333 |
+
value: 53.839999999999996
|
334 |
+
- type: ndcg_at_1000
|
335 |
+
value: 55.82899999999999
|
336 |
+
- type: ndcg_at_3
|
337 |
+
value: 44.914
|
338 |
+
- type: ndcg_at_5
|
339 |
+
value: 46.798
|
340 |
+
- type: precision_at_1
|
341 |
+
value: 40.382
|
342 |
+
- type: precision_at_10
|
343 |
+
value: 9.274000000000001
|
344 |
+
- type: precision_at_100
|
345 |
+
value: 1.497
|
346 |
+
- type: precision_at_1000
|
347 |
+
value: 0.198
|
348 |
+
- type: precision_at_3
|
349 |
+
value: 21.592
|
350 |
+
- type: precision_at_5
|
351 |
+
value: 15.159
|
352 |
+
- type: recall_at_1
|
353 |
+
value: 32.597
|
354 |
+
- type: recall_at_10
|
355 |
+
value: 59.882000000000005
|
356 |
+
- type: recall_at_100
|
357 |
+
value: 78.446
|
358 |
+
- type: recall_at_1000
|
359 |
+
value: 90.88000000000001
|
360 |
+
- type: recall_at_3
|
361 |
+
value: 46.9
|
362 |
+
- type: recall_at_5
|
363 |
+
value: 52.222
|
364 |
+
- task:
|
365 |
+
type: Retrieval
|
366 |
+
dataset:
|
367 |
+
type: BeIR/cqadupstack
|
368 |
+
name: MTEB CQADupstackGamingRetrieval
|
369 |
+
config: default
|
370 |
+
split: test
|
371 |
+
revision: None
|
372 |
+
metrics:
|
373 |
+
- type: map_at_1
|
374 |
+
value: 43.8
|
375 |
+
- type: map_at_10
|
376 |
+
value: 57.293000000000006
|
377 |
+
- type: map_at_100
|
378 |
+
value: 58.321
|
379 |
+
- type: map_at_1000
|
380 |
+
value: 58.361
|
381 |
+
- type: map_at_3
|
382 |
+
value: 53.839999999999996
|
383 |
+
- type: map_at_5
|
384 |
+
value: 55.838
|
385 |
+
- type: mrr_at_1
|
386 |
+
value: 49.592000000000006
|
387 |
+
- type: mrr_at_10
|
388 |
+
value: 60.643
|
389 |
+
- type: mrr_at_100
|
390 |
+
value: 61.23499999999999
|
391 |
+
- type: mrr_at_1000
|
392 |
+
value: 61.251999999999995
|
393 |
+
- type: mrr_at_3
|
394 |
+
value: 58.265
|
395 |
+
- type: mrr_at_5
|
396 |
+
value: 59.717
|
397 |
+
- type: ndcg_at_1
|
398 |
+
value: 49.592000000000006
|
399 |
+
- type: ndcg_at_10
|
400 |
+
value: 63.364
|
401 |
+
- type: ndcg_at_100
|
402 |
+
value: 67.167
|
403 |
+
- type: ndcg_at_1000
|
404 |
+
value: 67.867
|
405 |
+
- type: ndcg_at_3
|
406 |
+
value: 57.912
|
407 |
+
- type: ndcg_at_5
|
408 |
+
value: 60.697
|
409 |
+
- type: precision_at_1
|
410 |
+
value: 49.592000000000006
|
411 |
+
- type: precision_at_10
|
412 |
+
value: 10.088
|
413 |
+
- type: precision_at_100
|
414 |
+
value: 1.2930000000000001
|
415 |
+
- type: precision_at_1000
|
416 |
+
value: 0.13899999999999998
|
417 |
+
- type: precision_at_3
|
418 |
+
value: 25.789
|
419 |
+
- type: precision_at_5
|
420 |
+
value: 17.541999999999998
|
421 |
+
- type: recall_at_1
|
422 |
+
value: 43.8
|
423 |
+
- type: recall_at_10
|
424 |
+
value: 77.635
|
425 |
+
- type: recall_at_100
|
426 |
+
value: 93.748
|
427 |
+
- type: recall_at_1000
|
428 |
+
value: 98.468
|
429 |
+
- type: recall_at_3
|
430 |
+
value: 63.223
|
431 |
+
- type: recall_at_5
|
432 |
+
value: 70.122
|
433 |
+
- task:
|
434 |
+
type: Retrieval
|
435 |
+
dataset:
|
436 |
+
type: BeIR/cqadupstack
|
437 |
+
name: MTEB CQADupstackGisRetrieval
|
438 |
+
config: default
|
439 |
+
split: test
|
440 |
+
revision: None
|
441 |
+
metrics:
|
442 |
+
- type: map_at_1
|
443 |
+
value: 27.721
|
444 |
+
- type: map_at_10
|
445 |
+
value: 35.626999999999995
|
446 |
+
- type: map_at_100
|
447 |
+
value: 36.719
|
448 |
+
- type: map_at_1000
|
449 |
+
value: 36.8
|
450 |
+
- type: map_at_3
|
451 |
+
value: 32.781
|
452 |
+
- type: map_at_5
|
453 |
+
value: 34.333999999999996
|
454 |
+
- type: mrr_at_1
|
455 |
+
value: 29.604999999999997
|
456 |
+
- type: mrr_at_10
|
457 |
+
value: 37.564
|
458 |
+
- type: mrr_at_100
|
459 |
+
value: 38.505
|
460 |
+
- type: mrr_at_1000
|
461 |
+
value: 38.565
|
462 |
+
- type: mrr_at_3
|
463 |
+
value: 34.727000000000004
|
464 |
+
- type: mrr_at_5
|
465 |
+
value: 36.207
|
466 |
+
- type: ndcg_at_1
|
467 |
+
value: 29.604999999999997
|
468 |
+
- type: ndcg_at_10
|
469 |
+
value: 40.575
|
470 |
+
- type: ndcg_at_100
|
471 |
+
value: 45.613
|
472 |
+
- type: ndcg_at_1000
|
473 |
+
value: 47.676
|
474 |
+
- type: ndcg_at_3
|
475 |
+
value: 34.811
|
476 |
+
- type: ndcg_at_5
|
477 |
+
value: 37.491
|
478 |
+
- type: precision_at_1
|
479 |
+
value: 29.604999999999997
|
480 |
+
- type: precision_at_10
|
481 |
+
value: 6.1690000000000005
|
482 |
+
- type: precision_at_100
|
483 |
+
value: 0.906
|
484 |
+
- type: precision_at_1000
|
485 |
+
value: 0.11199999999999999
|
486 |
+
- type: precision_at_3
|
487 |
+
value: 14.237
|
488 |
+
- type: precision_at_5
|
489 |
+
value: 10.056
|
490 |
+
- type: recall_at_1
|
491 |
+
value: 27.721
|
492 |
+
- type: recall_at_10
|
493 |
+
value: 54.041
|
494 |
+
- type: recall_at_100
|
495 |
+
value: 76.62299999999999
|
496 |
+
- type: recall_at_1000
|
497 |
+
value: 92.134
|
498 |
+
- type: recall_at_3
|
499 |
+
value: 38.582
|
500 |
+
- type: recall_at_5
|
501 |
+
value: 44.989000000000004
|
502 |
+
- task:
|
503 |
+
type: Retrieval
|
504 |
+
dataset:
|
505 |
+
type: BeIR/cqadupstack
|
506 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
507 |
+
config: default
|
508 |
+
split: test
|
509 |
+
revision: None
|
510 |
+
metrics:
|
511 |
+
- type: map_at_1
|
512 |
+
value: 16.553
|
513 |
+
- type: map_at_10
|
514 |
+
value: 25.384
|
515 |
+
- type: map_at_100
|
516 |
+
value: 26.655
|
517 |
+
- type: map_at_1000
|
518 |
+
value: 26.778000000000002
|
519 |
+
- type: map_at_3
|
520 |
+
value: 22.733
|
521 |
+
- type: map_at_5
|
522 |
+
value: 24.119
|
523 |
+
- type: mrr_at_1
|
524 |
+
value: 20.149
|
525 |
+
- type: mrr_at_10
|
526 |
+
value: 29.705
|
527 |
+
- type: mrr_at_100
|
528 |
+
value: 30.672
|
529 |
+
- type: mrr_at_1000
|
530 |
+
value: 30.737
|
531 |
+
- type: mrr_at_3
|
532 |
+
value: 27.032
|
533 |
+
- type: mrr_at_5
|
534 |
+
value: 28.369
|
535 |
+
- type: ndcg_at_1
|
536 |
+
value: 20.149
|
537 |
+
- type: ndcg_at_10
|
538 |
+
value: 30.843999999999998
|
539 |
+
- type: ndcg_at_100
|
540 |
+
value: 36.716
|
541 |
+
- type: ndcg_at_1000
|
542 |
+
value: 39.495000000000005
|
543 |
+
- type: ndcg_at_3
|
544 |
+
value: 25.918999999999997
|
545 |
+
- type: ndcg_at_5
|
546 |
+
value: 27.992
|
547 |
+
- type: precision_at_1
|
548 |
+
value: 20.149
|
549 |
+
- type: precision_at_10
|
550 |
+
value: 5.858
|
551 |
+
- type: precision_at_100
|
552 |
+
value: 1.009
|
553 |
+
- type: precision_at_1000
|
554 |
+
value: 0.13799999999999998
|
555 |
+
- type: precision_at_3
|
556 |
+
value: 12.645000000000001
|
557 |
+
- type: precision_at_5
|
558 |
+
value: 9.179
|
559 |
+
- type: recall_at_1
|
560 |
+
value: 16.553
|
561 |
+
- type: recall_at_10
|
562 |
+
value: 43.136
|
563 |
+
- type: recall_at_100
|
564 |
+
value: 68.562
|
565 |
+
- type: recall_at_1000
|
566 |
+
value: 88.208
|
567 |
+
- type: recall_at_3
|
568 |
+
value: 29.493000000000002
|
569 |
+
- type: recall_at_5
|
570 |
+
value: 34.751
|
571 |
+
- task:
|
572 |
+
type: Retrieval
|
573 |
+
dataset:
|
574 |
+
type: BeIR/cqadupstack
|
575 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
576 |
+
config: default
|
577 |
+
split: test
|
578 |
+
revision: None
|
579 |
+
metrics:
|
580 |
+
- type: map_at_1
|
581 |
+
value: 28.000999999999998
|
582 |
+
- type: map_at_10
|
583 |
+
value: 39.004
|
584 |
+
- type: map_at_100
|
585 |
+
value: 40.461999999999996
|
586 |
+
- type: map_at_1000
|
587 |
+
value: 40.566
|
588 |
+
- type: map_at_3
|
589 |
+
value: 35.805
|
590 |
+
- type: map_at_5
|
591 |
+
value: 37.672
|
592 |
+
- type: mrr_at_1
|
593 |
+
value: 33.782000000000004
|
594 |
+
- type: mrr_at_10
|
595 |
+
value: 44.702
|
596 |
+
- type: mrr_at_100
|
597 |
+
value: 45.528
|
598 |
+
- type: mrr_at_1000
|
599 |
+
value: 45.576
|
600 |
+
- type: mrr_at_3
|
601 |
+
value: 42.14
|
602 |
+
- type: mrr_at_5
|
603 |
+
value: 43.651
|
604 |
+
- type: ndcg_at_1
|
605 |
+
value: 33.782000000000004
|
606 |
+
- type: ndcg_at_10
|
607 |
+
value: 45.275999999999996
|
608 |
+
- type: ndcg_at_100
|
609 |
+
value: 50.888
|
610 |
+
- type: ndcg_at_1000
|
611 |
+
value: 52.879
|
612 |
+
- type: ndcg_at_3
|
613 |
+
value: 40.191
|
614 |
+
- type: ndcg_at_5
|
615 |
+
value: 42.731
|
616 |
+
- type: precision_at_1
|
617 |
+
value: 33.782000000000004
|
618 |
+
- type: precision_at_10
|
619 |
+
value: 8.200000000000001
|
620 |
+
- type: precision_at_100
|
621 |
+
value: 1.287
|
622 |
+
- type: precision_at_1000
|
623 |
+
value: 0.16199999999999998
|
624 |
+
- type: precision_at_3
|
625 |
+
value: 19.185
|
626 |
+
- type: precision_at_5
|
627 |
+
value: 13.667000000000002
|
628 |
+
- type: recall_at_1
|
629 |
+
value: 28.000999999999998
|
630 |
+
- type: recall_at_10
|
631 |
+
value: 58.131
|
632 |
+
- type: recall_at_100
|
633 |
+
value: 80.869
|
634 |
+
- type: recall_at_1000
|
635 |
+
value: 93.931
|
636 |
+
- type: recall_at_3
|
637 |
+
value: 44.161
|
638 |
+
- type: recall_at_5
|
639 |
+
value: 50.592000000000006
|
640 |
+
- task:
|
641 |
+
type: Retrieval
|
642 |
+
dataset:
|
643 |
+
type: BeIR/cqadupstack
|
644 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
645 |
+
config: default
|
646 |
+
split: test
|
647 |
+
revision: None
|
648 |
+
metrics:
|
649 |
+
- type: map_at_1
|
650 |
+
value: 28.047
|
651 |
+
- type: map_at_10
|
652 |
+
value: 38.596000000000004
|
653 |
+
- type: map_at_100
|
654 |
+
value: 40.116
|
655 |
+
- type: map_at_1000
|
656 |
+
value: 40.232
|
657 |
+
- type: map_at_3
|
658 |
+
value: 35.205
|
659 |
+
- type: map_at_5
|
660 |
+
value: 37.076
|
661 |
+
- type: mrr_at_1
|
662 |
+
value: 34.932
|
663 |
+
- type: mrr_at_10
|
664 |
+
value: 44.496
|
665 |
+
- type: mrr_at_100
|
666 |
+
value: 45.47
|
667 |
+
- type: mrr_at_1000
|
668 |
+
value: 45.519999999999996
|
669 |
+
- type: mrr_at_3
|
670 |
+
value: 41.743
|
671 |
+
- type: mrr_at_5
|
672 |
+
value: 43.352000000000004
|
673 |
+
- type: ndcg_at_1
|
674 |
+
value: 34.932
|
675 |
+
- type: ndcg_at_10
|
676 |
+
value: 44.901
|
677 |
+
- type: ndcg_at_100
|
678 |
+
value: 50.788999999999994
|
679 |
+
- type: ndcg_at_1000
|
680 |
+
value: 52.867
|
681 |
+
- type: ndcg_at_3
|
682 |
+
value: 39.449
|
683 |
+
- type: ndcg_at_5
|
684 |
+
value: 41.929
|
685 |
+
- type: precision_at_1
|
686 |
+
value: 34.932
|
687 |
+
- type: precision_at_10
|
688 |
+
value: 8.311
|
689 |
+
- type: precision_at_100
|
690 |
+
value: 1.3050000000000002
|
691 |
+
- type: precision_at_1000
|
692 |
+
value: 0.166
|
693 |
+
- type: precision_at_3
|
694 |
+
value: 18.836
|
695 |
+
- type: precision_at_5
|
696 |
+
value: 13.447000000000001
|
697 |
+
- type: recall_at_1
|
698 |
+
value: 28.047
|
699 |
+
- type: recall_at_10
|
700 |
+
value: 57.717
|
701 |
+
- type: recall_at_100
|
702 |
+
value: 82.182
|
703 |
+
- type: recall_at_1000
|
704 |
+
value: 95.82000000000001
|
705 |
+
- type: recall_at_3
|
706 |
+
value: 42.448
|
707 |
+
- type: recall_at_5
|
708 |
+
value: 49.071
|
709 |
+
- task:
|
710 |
+
type: Retrieval
|
711 |
+
dataset:
|
712 |
+
type: BeIR/cqadupstack
|
713 |
+
name: MTEB CQADupstackRetrieval
|
714 |
+
config: default
|
715 |
+
split: test
|
716 |
+
revision: None
|
717 |
+
metrics:
|
718 |
+
- type: map_at_1
|
719 |
+
value: 27.861250000000005
|
720 |
+
- type: map_at_10
|
721 |
+
value: 37.529583333333335
|
722 |
+
- type: map_at_100
|
723 |
+
value: 38.7915
|
724 |
+
- type: map_at_1000
|
725 |
+
value: 38.90558333333335
|
726 |
+
- type: map_at_3
|
727 |
+
value: 34.57333333333333
|
728 |
+
- type: map_at_5
|
729 |
+
value: 36.187166666666656
|
730 |
+
- type: mrr_at_1
|
731 |
+
value: 32.88291666666666
|
732 |
+
- type: mrr_at_10
|
733 |
+
value: 41.79750000000001
|
734 |
+
- type: mrr_at_100
|
735 |
+
value: 42.63183333333333
|
736 |
+
- type: mrr_at_1000
|
737 |
+
value: 42.68483333333333
|
738 |
+
- type: mrr_at_3
|
739 |
+
value: 39.313750000000006
|
740 |
+
- type: mrr_at_5
|
741 |
+
value: 40.70483333333333
|
742 |
+
- type: ndcg_at_1
|
743 |
+
value: 32.88291666666666
|
744 |
+
- type: ndcg_at_10
|
745 |
+
value: 43.09408333333333
|
746 |
+
- type: ndcg_at_100
|
747 |
+
value: 48.22158333333333
|
748 |
+
- type: ndcg_at_1000
|
749 |
+
value: 50.358000000000004
|
750 |
+
- type: ndcg_at_3
|
751 |
+
value: 38.129583333333336
|
752 |
+
- type: ndcg_at_5
|
753 |
+
value: 40.39266666666666
|
754 |
+
- type: precision_at_1
|
755 |
+
value: 32.88291666666666
|
756 |
+
- type: precision_at_10
|
757 |
+
value: 7.5584999999999996
|
758 |
+
- type: precision_at_100
|
759 |
+
value: 1.1903333333333332
|
760 |
+
- type: precision_at_1000
|
761 |
+
value: 0.15658333333333332
|
762 |
+
- type: precision_at_3
|
763 |
+
value: 17.495916666666666
|
764 |
+
- type: precision_at_5
|
765 |
+
value: 12.373833333333332
|
766 |
+
- type: recall_at_1
|
767 |
+
value: 27.861250000000005
|
768 |
+
- type: recall_at_10
|
769 |
+
value: 55.215916666666665
|
770 |
+
- type: recall_at_100
|
771 |
+
value: 77.392
|
772 |
+
- type: recall_at_1000
|
773 |
+
value: 92.04908333333334
|
774 |
+
- type: recall_at_3
|
775 |
+
value: 41.37475
|
776 |
+
- type: recall_at_5
|
777 |
+
value: 47.22908333333333
|
778 |
+
- task:
|
779 |
+
type: Retrieval
|
780 |
+
dataset:
|
781 |
+
type: BeIR/cqadupstack
|
782 |
+
name: MTEB CQADupstackStatsRetrieval
|
783 |
+
config: default
|
784 |
+
split: test
|
785 |
+
revision: None
|
786 |
+
metrics:
|
787 |
+
- type: map_at_1
|
788 |
+
value: 25.064999999999998
|
789 |
+
- type: map_at_10
|
790 |
+
value: 31.635999999999996
|
791 |
+
- type: map_at_100
|
792 |
+
value: 32.596000000000004
|
793 |
+
- type: map_at_1000
|
794 |
+
value: 32.695
|
795 |
+
- type: map_at_3
|
796 |
+
value: 29.612
|
797 |
+
- type: map_at_5
|
798 |
+
value: 30.768
|
799 |
+
- type: mrr_at_1
|
800 |
+
value: 28.528
|
801 |
+
- type: mrr_at_10
|
802 |
+
value: 34.717
|
803 |
+
- type: mrr_at_100
|
804 |
+
value: 35.558
|
805 |
+
- type: mrr_at_1000
|
806 |
+
value: 35.626000000000005
|
807 |
+
- type: mrr_at_3
|
808 |
+
value: 32.745000000000005
|
809 |
+
- type: mrr_at_5
|
810 |
+
value: 33.819
|
811 |
+
- type: ndcg_at_1
|
812 |
+
value: 28.528
|
813 |
+
- type: ndcg_at_10
|
814 |
+
value: 35.647
|
815 |
+
- type: ndcg_at_100
|
816 |
+
value: 40.207
|
817 |
+
- type: ndcg_at_1000
|
818 |
+
value: 42.695
|
819 |
+
- type: ndcg_at_3
|
820 |
+
value: 31.878
|
821 |
+
- type: ndcg_at_5
|
822 |
+
value: 33.634
|
823 |
+
- type: precision_at_1
|
824 |
+
value: 28.528
|
825 |
+
- type: precision_at_10
|
826 |
+
value: 5.46
|
827 |
+
- type: precision_at_100
|
828 |
+
value: 0.84
|
829 |
+
- type: precision_at_1000
|
830 |
+
value: 0.11399999999999999
|
831 |
+
- type: precision_at_3
|
832 |
+
value: 13.547999999999998
|
833 |
+
- type: precision_at_5
|
834 |
+
value: 9.325
|
835 |
+
- type: recall_at_1
|
836 |
+
value: 25.064999999999998
|
837 |
+
- type: recall_at_10
|
838 |
+
value: 45.096000000000004
|
839 |
+
- type: recall_at_100
|
840 |
+
value: 65.658
|
841 |
+
- type: recall_at_1000
|
842 |
+
value: 84.128
|
843 |
+
- type: recall_at_3
|
844 |
+
value: 34.337
|
845 |
+
- type: recall_at_5
|
846 |
+
value: 38.849000000000004
|
847 |
+
- task:
|
848 |
+
type: Retrieval
|
849 |
+
dataset:
|
850 |
+
type: BeIR/cqadupstack
|
851 |
+
name: MTEB CQADupstackTexRetrieval
|
852 |
+
config: default
|
853 |
+
split: test
|
854 |
+
revision: None
|
855 |
+
metrics:
|
856 |
+
- type: map_at_1
|
857 |
+
value: 17.276
|
858 |
+
- type: map_at_10
|
859 |
+
value: 24.535
|
860 |
+
- type: map_at_100
|
861 |
+
value: 25.655
|
862 |
+
- type: map_at_1000
|
863 |
+
value: 25.782
|
864 |
+
- type: map_at_3
|
865 |
+
value: 22.228
|
866 |
+
- type: map_at_5
|
867 |
+
value: 23.612
|
868 |
+
- type: mrr_at_1
|
869 |
+
value: 21.266
|
870 |
+
- type: mrr_at_10
|
871 |
+
value: 28.474
|
872 |
+
- type: mrr_at_100
|
873 |
+
value: 29.398000000000003
|
874 |
+
- type: mrr_at_1000
|
875 |
+
value: 29.482000000000003
|
876 |
+
- type: mrr_at_3
|
877 |
+
value: 26.245
|
878 |
+
- type: mrr_at_5
|
879 |
+
value: 27.624
|
880 |
+
- type: ndcg_at_1
|
881 |
+
value: 21.266
|
882 |
+
- type: ndcg_at_10
|
883 |
+
value: 29.087000000000003
|
884 |
+
- type: ndcg_at_100
|
885 |
+
value: 34.374
|
886 |
+
- type: ndcg_at_1000
|
887 |
+
value: 37.433
|
888 |
+
- type: ndcg_at_3
|
889 |
+
value: 25.040000000000003
|
890 |
+
- type: ndcg_at_5
|
891 |
+
value: 27.116
|
892 |
+
- type: precision_at_1
|
893 |
+
value: 21.266
|
894 |
+
- type: precision_at_10
|
895 |
+
value: 5.258
|
896 |
+
- type: precision_at_100
|
897 |
+
value: 0.9299999999999999
|
898 |
+
- type: precision_at_1000
|
899 |
+
value: 0.13699999999999998
|
900 |
+
- type: precision_at_3
|
901 |
+
value: 11.849
|
902 |
+
- type: precision_at_5
|
903 |
+
value: 8.699
|
904 |
+
- type: recall_at_1
|
905 |
+
value: 17.276
|
906 |
+
- type: recall_at_10
|
907 |
+
value: 38.928000000000004
|
908 |
+
- type: recall_at_100
|
909 |
+
value: 62.529
|
910 |
+
- type: recall_at_1000
|
911 |
+
value: 84.44800000000001
|
912 |
+
- type: recall_at_3
|
913 |
+
value: 27.554000000000002
|
914 |
+
- type: recall_at_5
|
915 |
+
value: 32.915
|
916 |
+
- task:
|
917 |
+
type: Retrieval
|
918 |
+
dataset:
|
919 |
+
type: BeIR/cqadupstack
|
920 |
+
name: MTEB CQADupstackUnixRetrieval
|
921 |
+
config: default
|
922 |
+
split: test
|
923 |
+
revision: None
|
924 |
+
metrics:
|
925 |
+
- type: map_at_1
|
926 |
+
value: 27.297
|
927 |
+
- type: map_at_10
|
928 |
+
value: 36.957
|
929 |
+
- type: map_at_100
|
930 |
+
value: 38.252
|
931 |
+
- type: map_at_1000
|
932 |
+
value: 38.356
|
933 |
+
- type: map_at_3
|
934 |
+
value: 34.121
|
935 |
+
- type: map_at_5
|
936 |
+
value: 35.782000000000004
|
937 |
+
- type: mrr_at_1
|
938 |
+
value: 32.275999999999996
|
939 |
+
- type: mrr_at_10
|
940 |
+
value: 41.198
|
941 |
+
- type: mrr_at_100
|
942 |
+
value: 42.131
|
943 |
+
- type: mrr_at_1000
|
944 |
+
value: 42.186
|
945 |
+
- type: mrr_at_3
|
946 |
+
value: 38.557
|
947 |
+
- type: mrr_at_5
|
948 |
+
value: 40.12
|
949 |
+
- type: ndcg_at_1
|
950 |
+
value: 32.275999999999996
|
951 |
+
- type: ndcg_at_10
|
952 |
+
value: 42.516
|
953 |
+
- type: ndcg_at_100
|
954 |
+
value: 48.15
|
955 |
+
- type: ndcg_at_1000
|
956 |
+
value: 50.344
|
957 |
+
- type: ndcg_at_3
|
958 |
+
value: 37.423
|
959 |
+
- type: ndcg_at_5
|
960 |
+
value: 39.919
|
961 |
+
- type: precision_at_1
|
962 |
+
value: 32.275999999999996
|
963 |
+
- type: precision_at_10
|
964 |
+
value: 7.155
|
965 |
+
- type: precision_at_100
|
966 |
+
value: 1.123
|
967 |
+
- type: precision_at_1000
|
968 |
+
value: 0.14200000000000002
|
969 |
+
- type: precision_at_3
|
970 |
+
value: 17.163999999999998
|
971 |
+
- type: precision_at_5
|
972 |
+
value: 12.127
|
973 |
+
- type: recall_at_1
|
974 |
+
value: 27.297
|
975 |
+
- type: recall_at_10
|
976 |
+
value: 55.238
|
977 |
+
- type: recall_at_100
|
978 |
+
value: 79.2
|
979 |
+
- type: recall_at_1000
|
980 |
+
value: 94.258
|
981 |
+
- type: recall_at_3
|
982 |
+
value: 41.327000000000005
|
983 |
+
- type: recall_at_5
|
984 |
+
value: 47.588
|
985 |
+
- task:
|
986 |
+
type: Retrieval
|
987 |
+
dataset:
|
988 |
+
type: BeIR/cqadupstack
|
989 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
990 |
+
config: default
|
991 |
+
split: test
|
992 |
+
revision: None
|
993 |
+
metrics:
|
994 |
+
- type: map_at_1
|
995 |
+
value: 29.142000000000003
|
996 |
+
- type: map_at_10
|
997 |
+
value: 38.769
|
998 |
+
- type: map_at_100
|
999 |
+
value: 40.292
|
1000 |
+
- type: map_at_1000
|
1001 |
+
value: 40.510000000000005
|
1002 |
+
- type: map_at_3
|
1003 |
+
value: 35.39
|
1004 |
+
- type: map_at_5
|
1005 |
+
value: 37.009
|
1006 |
+
- type: mrr_at_1
|
1007 |
+
value: 34.19
|
1008 |
+
- type: mrr_at_10
|
1009 |
+
value: 43.418
|
1010 |
+
- type: mrr_at_100
|
1011 |
+
value: 44.132
|
1012 |
+
- type: mrr_at_1000
|
1013 |
+
value: 44.175
|
1014 |
+
- type: mrr_at_3
|
1015 |
+
value: 40.547
|
1016 |
+
- type: mrr_at_5
|
1017 |
+
value: 42.088
|
1018 |
+
- type: ndcg_at_1
|
1019 |
+
value: 34.19
|
1020 |
+
- type: ndcg_at_10
|
1021 |
+
value: 45.14
|
1022 |
+
- type: ndcg_at_100
|
1023 |
+
value: 50.364
|
1024 |
+
- type: ndcg_at_1000
|
1025 |
+
value: 52.481
|
1026 |
+
- type: ndcg_at_3
|
1027 |
+
value: 39.466
|
1028 |
+
- type: ndcg_at_5
|
1029 |
+
value: 41.772
|
1030 |
+
- type: precision_at_1
|
1031 |
+
value: 34.19
|
1032 |
+
- type: precision_at_10
|
1033 |
+
value: 8.715
|
1034 |
+
- type: precision_at_100
|
1035 |
+
value: 1.6150000000000002
|
1036 |
+
- type: precision_at_1000
|
1037 |
+
value: 0.247
|
1038 |
+
- type: precision_at_3
|
1039 |
+
value: 18.248
|
1040 |
+
- type: precision_at_5
|
1041 |
+
value: 13.161999999999999
|
1042 |
+
- type: recall_at_1
|
1043 |
+
value: 29.142000000000003
|
1044 |
+
- type: recall_at_10
|
1045 |
+
value: 57.577999999999996
|
1046 |
+
- type: recall_at_100
|
1047 |
+
value: 81.428
|
1048 |
+
- type: recall_at_1000
|
1049 |
+
value: 94.017
|
1050 |
+
- type: recall_at_3
|
1051 |
+
value: 41.402
|
1052 |
+
- type: recall_at_5
|
1053 |
+
value: 47.695
|
1054 |
+
- task:
|
1055 |
+
type: Retrieval
|
1056 |
+
dataset:
|
1057 |
+
type: BeIR/cqadupstack
|
1058 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1059 |
+
config: default
|
1060 |
+
split: test
|
1061 |
+
revision: None
|
1062 |
+
metrics:
|
1063 |
+
- type: map_at_1
|
1064 |
+
value: 22.039
|
1065 |
+
- type: map_at_10
|
1066 |
+
value: 30.669999999999998
|
1067 |
+
- type: map_at_100
|
1068 |
+
value: 31.682
|
1069 |
+
- type: map_at_1000
|
1070 |
+
value: 31.794
|
1071 |
+
- type: map_at_3
|
1072 |
+
value: 28.139999999999997
|
1073 |
+
- type: map_at_5
|
1074 |
+
value: 29.457
|
1075 |
+
- type: mrr_at_1
|
1076 |
+
value: 24.399
|
1077 |
+
- type: mrr_at_10
|
1078 |
+
value: 32.687
|
1079 |
+
- type: mrr_at_100
|
1080 |
+
value: 33.622
|
1081 |
+
- type: mrr_at_1000
|
1082 |
+
value: 33.698
|
1083 |
+
- type: mrr_at_3
|
1084 |
+
value: 30.407
|
1085 |
+
- type: mrr_at_5
|
1086 |
+
value: 31.552999999999997
|
1087 |
+
- type: ndcg_at_1
|
1088 |
+
value: 24.399
|
1089 |
+
- type: ndcg_at_10
|
1090 |
+
value: 35.472
|
1091 |
+
- type: ndcg_at_100
|
1092 |
+
value: 40.455000000000005
|
1093 |
+
- type: ndcg_at_1000
|
1094 |
+
value: 43.15
|
1095 |
+
- type: ndcg_at_3
|
1096 |
+
value: 30.575000000000003
|
1097 |
+
- type: ndcg_at_5
|
1098 |
+
value: 32.668
|
1099 |
+
- type: precision_at_1
|
1100 |
+
value: 24.399
|
1101 |
+
- type: precision_at_10
|
1102 |
+
value: 5.656
|
1103 |
+
- type: precision_at_100
|
1104 |
+
value: 0.874
|
1105 |
+
- type: precision_at_1000
|
1106 |
+
value: 0.121
|
1107 |
+
- type: precision_at_3
|
1108 |
+
value: 13.062000000000001
|
1109 |
+
- type: precision_at_5
|
1110 |
+
value: 9.242
|
1111 |
+
- type: recall_at_1
|
1112 |
+
value: 22.039
|
1113 |
+
- type: recall_at_10
|
1114 |
+
value: 48.379
|
1115 |
+
- type: recall_at_100
|
1116 |
+
value: 71.11800000000001
|
1117 |
+
- type: recall_at_1000
|
1118 |
+
value: 91.095
|
1119 |
+
- type: recall_at_3
|
1120 |
+
value: 35.108
|
1121 |
+
- type: recall_at_5
|
1122 |
+
value: 40.015
|
1123 |
+
- task:
|
1124 |
+
type: Retrieval
|
1125 |
+
dataset:
|
1126 |
+
type: climate-fever
|
1127 |
+
name: MTEB ClimateFEVER
|
1128 |
+
config: default
|
1129 |
+
split: test
|
1130 |
+
revision: None
|
1131 |
+
metrics:
|
1132 |
+
- type: map_at_1
|
1133 |
+
value: 10.144
|
1134 |
+
- type: map_at_10
|
1135 |
+
value: 18.238
|
1136 |
+
- type: map_at_100
|
1137 |
+
value: 20.143
|
1138 |
+
- type: map_at_1000
|
1139 |
+
value: 20.346
|
1140 |
+
- type: map_at_3
|
1141 |
+
value: 14.809
|
1142 |
+
- type: map_at_5
|
1143 |
+
value: 16.567999999999998
|
1144 |
+
- type: mrr_at_1
|
1145 |
+
value: 22.671
|
1146 |
+
- type: mrr_at_10
|
1147 |
+
value: 34.906
|
1148 |
+
- type: mrr_at_100
|
1149 |
+
value: 35.858000000000004
|
1150 |
+
- type: mrr_at_1000
|
1151 |
+
value: 35.898
|
1152 |
+
- type: mrr_at_3
|
1153 |
+
value: 31.238
|
1154 |
+
- type: mrr_at_5
|
1155 |
+
value: 33.342
|
1156 |
+
- type: ndcg_at_1
|
1157 |
+
value: 22.671
|
1158 |
+
- type: ndcg_at_10
|
1159 |
+
value: 26.540000000000003
|
1160 |
+
- type: ndcg_at_100
|
1161 |
+
value: 34.138000000000005
|
1162 |
+
- type: ndcg_at_1000
|
1163 |
+
value: 37.72
|
1164 |
+
- type: ndcg_at_3
|
1165 |
+
value: 20.766000000000002
|
1166 |
+
- type: ndcg_at_5
|
1167 |
+
value: 22.927
|
1168 |
+
- type: precision_at_1
|
1169 |
+
value: 22.671
|
1170 |
+
- type: precision_at_10
|
1171 |
+
value: 8.619
|
1172 |
+
- type: precision_at_100
|
1173 |
+
value: 1.678
|
1174 |
+
- type: precision_at_1000
|
1175 |
+
value: 0.23500000000000001
|
1176 |
+
- type: precision_at_3
|
1177 |
+
value: 15.592
|
1178 |
+
- type: precision_at_5
|
1179 |
+
value: 12.43
|
1180 |
+
- type: recall_at_1
|
1181 |
+
value: 10.144
|
1182 |
+
- type: recall_at_10
|
1183 |
+
value: 33.46
|
1184 |
+
- type: recall_at_100
|
1185 |
+
value: 59.758
|
1186 |
+
- type: recall_at_1000
|
1187 |
+
value: 79.704
|
1188 |
+
- type: recall_at_3
|
1189 |
+
value: 19.604
|
1190 |
+
- type: recall_at_5
|
1191 |
+
value: 25.367
|
1192 |
+
- task:
|
1193 |
+
type: Retrieval
|
1194 |
+
dataset:
|
1195 |
+
type: dbpedia-entity
|
1196 |
+
name: MTEB DBPedia
|
1197 |
+
config: default
|
1198 |
+
split: test
|
1199 |
+
revision: None
|
1200 |
+
metrics:
|
1201 |
+
- type: map_at_1
|
1202 |
+
value: 8.654
|
1203 |
+
- type: map_at_10
|
1204 |
+
value: 18.506
|
1205 |
+
- type: map_at_100
|
1206 |
+
value: 26.412999999999997
|
1207 |
+
- type: map_at_1000
|
1208 |
+
value: 28.13
|
1209 |
+
- type: map_at_3
|
1210 |
+
value: 13.379
|
1211 |
+
- type: map_at_5
|
1212 |
+
value: 15.529000000000002
|
1213 |
+
- type: mrr_at_1
|
1214 |
+
value: 66.0
|
1215 |
+
- type: mrr_at_10
|
1216 |
+
value: 74.13
|
1217 |
+
- type: mrr_at_100
|
1218 |
+
value: 74.48700000000001
|
1219 |
+
- type: mrr_at_1000
|
1220 |
+
value: 74.49799999999999
|
1221 |
+
- type: mrr_at_3
|
1222 |
+
value: 72.75
|
1223 |
+
- type: mrr_at_5
|
1224 |
+
value: 73.762
|
1225 |
+
- type: ndcg_at_1
|
1226 |
+
value: 54.50000000000001
|
1227 |
+
- type: ndcg_at_10
|
1228 |
+
value: 40.236
|
1229 |
+
- type: ndcg_at_100
|
1230 |
+
value: 44.690999999999995
|
1231 |
+
- type: ndcg_at_1000
|
1232 |
+
value: 52.195
|
1233 |
+
- type: ndcg_at_3
|
1234 |
+
value: 45.632
|
1235 |
+
- type: ndcg_at_5
|
1236 |
+
value: 42.952
|
1237 |
+
- type: precision_at_1
|
1238 |
+
value: 66.0
|
1239 |
+
- type: precision_at_10
|
1240 |
+
value: 31.724999999999998
|
1241 |
+
- type: precision_at_100
|
1242 |
+
value: 10.299999999999999
|
1243 |
+
- type: precision_at_1000
|
1244 |
+
value: 2.194
|
1245 |
+
- type: precision_at_3
|
1246 |
+
value: 48.75
|
1247 |
+
- type: precision_at_5
|
1248 |
+
value: 41.6
|
1249 |
+
- type: recall_at_1
|
1250 |
+
value: 8.654
|
1251 |
+
- type: recall_at_10
|
1252 |
+
value: 23.74
|
1253 |
+
- type: recall_at_100
|
1254 |
+
value: 50.346999999999994
|
1255 |
+
- type: recall_at_1000
|
1256 |
+
value: 74.376
|
1257 |
+
- type: recall_at_3
|
1258 |
+
value: 14.636
|
1259 |
+
- type: recall_at_5
|
1260 |
+
value: 18.009
|
1261 |
+
- task:
|
1262 |
+
type: Classification
|
1263 |
+
dataset:
|
1264 |
+
type: mteb/emotion
|
1265 |
+
name: MTEB EmotionClassification
|
1266 |
+
config: default
|
1267 |
+
split: test
|
1268 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1269 |
+
metrics:
|
1270 |
+
- type: accuracy
|
1271 |
+
value: 53.245
|
1272 |
+
- type: f1
|
1273 |
+
value: 48.74520523753552
|
1274 |
+
- task:
|
1275 |
+
type: Retrieval
|
1276 |
+
dataset:
|
1277 |
+
type: fever
|
1278 |
+
name: MTEB FEVER
|
1279 |
+
config: default
|
1280 |
+
split: test
|
1281 |
+
revision: None
|
1282 |
+
metrics:
|
1283 |
+
- type: map_at_1
|
1284 |
+
value: 51.729
|
1285 |
+
- type: map_at_10
|
1286 |
+
value: 63.904
|
1287 |
+
- type: map_at_100
|
1288 |
+
value: 64.363
|
1289 |
+
- type: map_at_1000
|
1290 |
+
value: 64.38199999999999
|
1291 |
+
- type: map_at_3
|
1292 |
+
value: 61.393
|
1293 |
+
- type: map_at_5
|
1294 |
+
value: 63.02100000000001
|
1295 |
+
- type: mrr_at_1
|
1296 |
+
value: 55.686
|
1297 |
+
- type: mrr_at_10
|
1298 |
+
value: 67.804
|
1299 |
+
- type: mrr_at_100
|
1300 |
+
value: 68.15299999999999
|
1301 |
+
- type: mrr_at_1000
|
1302 |
+
value: 68.161
|
1303 |
+
- type: mrr_at_3
|
1304 |
+
value: 65.494
|
1305 |
+
- type: mrr_at_5
|
1306 |
+
value: 67.01599999999999
|
1307 |
+
- type: ndcg_at_1
|
1308 |
+
value: 55.686
|
1309 |
+
- type: ndcg_at_10
|
1310 |
+
value: 70.025
|
1311 |
+
- type: ndcg_at_100
|
1312 |
+
value: 72.011
|
1313 |
+
- type: ndcg_at_1000
|
1314 |
+
value: 72.443
|
1315 |
+
- type: ndcg_at_3
|
1316 |
+
value: 65.32900000000001
|
1317 |
+
- type: ndcg_at_5
|
1318 |
+
value: 68.05600000000001
|
1319 |
+
- type: precision_at_1
|
1320 |
+
value: 55.686
|
1321 |
+
- type: precision_at_10
|
1322 |
+
value: 9.358
|
1323 |
+
- type: precision_at_100
|
1324 |
+
value: 1.05
|
1325 |
+
- type: precision_at_1000
|
1326 |
+
value: 0.11
|
1327 |
+
- type: precision_at_3
|
1328 |
+
value: 26.318
|
1329 |
+
- type: precision_at_5
|
1330 |
+
value: 17.321
|
1331 |
+
- type: recall_at_1
|
1332 |
+
value: 51.729
|
1333 |
+
- type: recall_at_10
|
1334 |
+
value: 85.04
|
1335 |
+
- type: recall_at_100
|
1336 |
+
value: 93.777
|
1337 |
+
- type: recall_at_1000
|
1338 |
+
value: 96.824
|
1339 |
+
- type: recall_at_3
|
1340 |
+
value: 72.521
|
1341 |
+
- type: recall_at_5
|
1342 |
+
value: 79.148
|
1343 |
+
- task:
|
1344 |
+
type: Retrieval
|
1345 |
+
dataset:
|
1346 |
+
type: fiqa
|
1347 |
+
name: MTEB FiQA2018
|
1348 |
+
config: default
|
1349 |
+
split: test
|
1350 |
+
revision: None
|
1351 |
+
metrics:
|
1352 |
+
- type: map_at_1
|
1353 |
+
value: 23.765
|
1354 |
+
- type: map_at_10
|
1355 |
+
value: 39.114
|
1356 |
+
- type: map_at_100
|
1357 |
+
value: 40.987
|
1358 |
+
- type: map_at_1000
|
1359 |
+
value: 41.155
|
1360 |
+
- type: map_at_3
|
1361 |
+
value: 34.028000000000006
|
1362 |
+
- type: map_at_5
|
1363 |
+
value: 36.925000000000004
|
1364 |
+
- type: mrr_at_1
|
1365 |
+
value: 46.451
|
1366 |
+
- type: mrr_at_10
|
1367 |
+
value: 54.711
|
1368 |
+
- type: mrr_at_100
|
1369 |
+
value: 55.509
|
1370 |
+
- type: mrr_at_1000
|
1371 |
+
value: 55.535000000000004
|
1372 |
+
- type: mrr_at_3
|
1373 |
+
value: 52.649
|
1374 |
+
- type: mrr_at_5
|
1375 |
+
value: 53.729000000000006
|
1376 |
+
- type: ndcg_at_1
|
1377 |
+
value: 46.451
|
1378 |
+
- type: ndcg_at_10
|
1379 |
+
value: 46.955999999999996
|
1380 |
+
- type: ndcg_at_100
|
1381 |
+
value: 53.686
|
1382 |
+
- type: ndcg_at_1000
|
1383 |
+
value: 56.230000000000004
|
1384 |
+
- type: ndcg_at_3
|
1385 |
+
value: 43.374
|
1386 |
+
- type: ndcg_at_5
|
1387 |
+
value: 44.372
|
1388 |
+
- type: precision_at_1
|
1389 |
+
value: 46.451
|
1390 |
+
- type: precision_at_10
|
1391 |
+
value: 13.256
|
1392 |
+
- type: precision_at_100
|
1393 |
+
value: 2.019
|
1394 |
+
- type: precision_at_1000
|
1395 |
+
value: 0.247
|
1396 |
+
- type: precision_at_3
|
1397 |
+
value: 29.115000000000002
|
1398 |
+
- type: precision_at_5
|
1399 |
+
value: 21.389
|
1400 |
+
- type: recall_at_1
|
1401 |
+
value: 23.765
|
1402 |
+
- type: recall_at_10
|
1403 |
+
value: 53.452999999999996
|
1404 |
+
- type: recall_at_100
|
1405 |
+
value: 78.828
|
1406 |
+
- type: recall_at_1000
|
1407 |
+
value: 93.938
|
1408 |
+
- type: recall_at_3
|
1409 |
+
value: 39.023
|
1410 |
+
- type: recall_at_5
|
1411 |
+
value: 45.18
|
1412 |
+
- task:
|
1413 |
+
type: Retrieval
|
1414 |
+
dataset:
|
1415 |
+
type: hotpotqa
|
1416 |
+
name: MTEB HotpotQA
|
1417 |
+
config: default
|
1418 |
+
split: test
|
1419 |
+
revision: None
|
1420 |
+
metrics:
|
1421 |
+
- type: map_at_1
|
1422 |
+
value: 31.918000000000003
|
1423 |
+
- type: map_at_10
|
1424 |
+
value: 46.741
|
1425 |
+
- type: map_at_100
|
1426 |
+
value: 47.762
|
1427 |
+
- type: map_at_1000
|
1428 |
+
value: 47.849000000000004
|
1429 |
+
- type: map_at_3
|
1430 |
+
value: 43.578
|
1431 |
+
- type: map_at_5
|
1432 |
+
value: 45.395
|
1433 |
+
- type: mrr_at_1
|
1434 |
+
value: 63.834999999999994
|
1435 |
+
- type: mrr_at_10
|
1436 |
+
value: 71.312
|
1437 |
+
- type: mrr_at_100
|
1438 |
+
value: 71.695
|
1439 |
+
- type: mrr_at_1000
|
1440 |
+
value: 71.714
|
1441 |
+
- type: mrr_at_3
|
1442 |
+
value: 69.82000000000001
|
1443 |
+
- type: mrr_at_5
|
1444 |
+
value: 70.726
|
1445 |
+
- type: ndcg_at_1
|
1446 |
+
value: 63.834999999999994
|
1447 |
+
- type: ndcg_at_10
|
1448 |
+
value: 55.879999999999995
|
1449 |
+
- type: ndcg_at_100
|
1450 |
+
value: 59.723000000000006
|
1451 |
+
- type: ndcg_at_1000
|
1452 |
+
value: 61.49400000000001
|
1453 |
+
- type: ndcg_at_3
|
1454 |
+
value: 50.964
|
1455 |
+
- type: ndcg_at_5
|
1456 |
+
value: 53.47
|
1457 |
+
- type: precision_at_1
|
1458 |
+
value: 63.834999999999994
|
1459 |
+
- type: precision_at_10
|
1460 |
+
value: 11.845
|
1461 |
+
- type: precision_at_100
|
1462 |
+
value: 1.4869999999999999
|
1463 |
+
- type: precision_at_1000
|
1464 |
+
value: 0.172
|
1465 |
+
- type: precision_at_3
|
1466 |
+
value: 32.158
|
1467 |
+
- type: precision_at_5
|
1468 |
+
value: 21.278
|
1469 |
+
- type: recall_at_1
|
1470 |
+
value: 31.918000000000003
|
1471 |
+
- type: recall_at_10
|
1472 |
+
value: 59.223000000000006
|
1473 |
+
- type: recall_at_100
|
1474 |
+
value: 74.328
|
1475 |
+
- type: recall_at_1000
|
1476 |
+
value: 86.05000000000001
|
1477 |
+
- type: recall_at_3
|
1478 |
+
value: 48.238
|
1479 |
+
- type: recall_at_5
|
1480 |
+
value: 53.193999999999996
|
1481 |
+
- task:
|
1482 |
+
type: Classification
|
1483 |
+
dataset:
|
1484 |
+
type: mteb/imdb
|
1485 |
+
name: MTEB ImdbClassification
|
1486 |
+
config: default
|
1487 |
+
split: test
|
1488 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1489 |
+
metrics:
|
1490 |
+
- type: accuracy
|
1491 |
+
value: 79.7896
|
1492 |
+
- type: ap
|
1493 |
+
value: 73.65166029460288
|
1494 |
+
- type: f1
|
1495 |
+
value: 79.71794693711813
|
1496 |
+
- task:
|
1497 |
+
type: Retrieval
|
1498 |
+
dataset:
|
1499 |
+
type: msmarco
|
1500 |
+
name: MTEB MSMARCO
|
1501 |
+
config: default
|
1502 |
+
split: dev
|
1503 |
+
revision: None
|
1504 |
+
metrics:
|
1505 |
+
- type: map_at_1
|
1506 |
+
value: 22.239
|
1507 |
+
- type: map_at_10
|
1508 |
+
value: 34.542
|
1509 |
+
- type: map_at_100
|
1510 |
+
value: 35.717999999999996
|
1511 |
+
- type: map_at_1000
|
1512 |
+
value: 35.764
|
1513 |
+
- type: map_at_3
|
1514 |
+
value: 30.432
|
1515 |
+
- type: map_at_5
|
1516 |
+
value: 32.81
|
1517 |
+
- type: mrr_at_1
|
1518 |
+
value: 22.908
|
1519 |
+
- type: mrr_at_10
|
1520 |
+
value: 35.127
|
1521 |
+
- type: mrr_at_100
|
1522 |
+
value: 36.238
|
1523 |
+
- type: mrr_at_1000
|
1524 |
+
value: 36.278
|
1525 |
+
- type: mrr_at_3
|
1526 |
+
value: 31.076999999999998
|
1527 |
+
- type: mrr_at_5
|
1528 |
+
value: 33.419
|
1529 |
+
- type: ndcg_at_1
|
1530 |
+
value: 22.908
|
1531 |
+
- type: ndcg_at_10
|
1532 |
+
value: 41.607
|
1533 |
+
- type: ndcg_at_100
|
1534 |
+
value: 47.28
|
1535 |
+
- type: ndcg_at_1000
|
1536 |
+
value: 48.414
|
1537 |
+
- type: ndcg_at_3
|
1538 |
+
value: 33.253
|
1539 |
+
- type: ndcg_at_5
|
1540 |
+
value: 37.486000000000004
|
1541 |
+
- type: precision_at_1
|
1542 |
+
value: 22.908
|
1543 |
+
- type: precision_at_10
|
1544 |
+
value: 6.645
|
1545 |
+
- type: precision_at_100
|
1546 |
+
value: 0.9490000000000001
|
1547 |
+
- type: precision_at_1000
|
1548 |
+
value: 0.105
|
1549 |
+
- type: precision_at_3
|
1550 |
+
value: 14.130999999999998
|
1551 |
+
- type: precision_at_5
|
1552 |
+
value: 10.616
|
1553 |
+
- type: recall_at_1
|
1554 |
+
value: 22.239
|
1555 |
+
- type: recall_at_10
|
1556 |
+
value: 63.42
|
1557 |
+
- type: recall_at_100
|
1558 |
+
value: 89.696
|
1559 |
+
- type: recall_at_1000
|
1560 |
+
value: 98.351
|
1561 |
+
- type: recall_at_3
|
1562 |
+
value: 40.77
|
1563 |
+
- type: recall_at_5
|
1564 |
+
value: 50.93
|
1565 |
+
- task:
|
1566 |
+
type: Classification
|
1567 |
+
dataset:
|
1568 |
+
type: mteb/mtop_domain
|
1569 |
+
name: MTEB MTOPDomainClassification (en)
|
1570 |
+
config: en
|
1571 |
+
split: test
|
1572 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1573 |
+
metrics:
|
1574 |
+
- type: accuracy
|
1575 |
+
value: 95.06839945280439
|
1576 |
+
- type: f1
|
1577 |
+
value: 94.74276398224072
|
1578 |
+
- task:
|
1579 |
+
type: Classification
|
1580 |
+
dataset:
|
1581 |
+
type: mteb/mtop_intent
|
1582 |
+
name: MTEB MTOPIntentClassification (en)
|
1583 |
+
config: en
|
1584 |
+
split: test
|
1585 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1586 |
+
metrics:
|
1587 |
+
- type: accuracy
|
1588 |
+
value: 72.25718194254446
|
1589 |
+
- type: f1
|
1590 |
+
value: 53.91164489161391
|
1591 |
+
- task:
|
1592 |
+
type: Classification
|
1593 |
+
dataset:
|
1594 |
+
type: mteb/amazon_massive_intent
|
1595 |
+
name: MTEB MassiveIntentClassification (en)
|
1596 |
+
config: en
|
1597 |
+
split: test
|
1598 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1599 |
+
metrics:
|
1600 |
+
- type: accuracy
|
1601 |
+
value: 71.47948890383323
|
1602 |
+
- type: f1
|
1603 |
+
value: 69.98520247230257
|
1604 |
+
- task:
|
1605 |
+
type: Classification
|
1606 |
+
dataset:
|
1607 |
+
type: mteb/amazon_massive_scenario
|
1608 |
+
name: MTEB MassiveScenarioClassification (en)
|
1609 |
+
config: en
|
1610 |
+
split: test
|
1611 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1612 |
+
metrics:
|
1613 |
+
- type: accuracy
|
1614 |
+
value: 76.46603900470748
|
1615 |
+
- type: f1
|
1616 |
+
value: 76.44111526065399
|
1617 |
+
- task:
|
1618 |
+
type: Clustering
|
1619 |
+
dataset:
|
1620 |
+
type: mteb/medrxiv-clustering-p2p
|
1621 |
+
name: MTEB MedrxivClusteringP2P
|
1622 |
+
config: default
|
1623 |
+
split: test
|
1624 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1625 |
+
metrics:
|
1626 |
+
- type: v_measure
|
1627 |
+
value: 33.19106070798198
|
1628 |
+
- task:
|
1629 |
+
type: Clustering
|
1630 |
+
dataset:
|
1631 |
+
type: mteb/medrxiv-clustering-s2s
|
1632 |
+
name: MTEB MedrxivClusteringS2S
|
1633 |
+
config: default
|
1634 |
+
split: test
|
1635 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1636 |
+
metrics:
|
1637 |
+
- type: v_measure
|
1638 |
+
value: 30.78772205248094
|
1639 |
+
- task:
|
1640 |
+
type: Reranking
|
1641 |
+
dataset:
|
1642 |
+
type: mteb/mind_small
|
1643 |
+
name: MTEB MindSmallReranking
|
1644 |
+
config: default
|
1645 |
+
split: test
|
1646 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1647 |
+
metrics:
|
1648 |
+
- type: map
|
1649 |
+
value: 31.811231631488507
|
1650 |
+
- type: mrr
|
1651 |
+
value: 32.98200485378021
|
1652 |
+
- task:
|
1653 |
+
type: Retrieval
|
1654 |
+
dataset:
|
1655 |
+
type: nfcorpus
|
1656 |
+
name: MTEB NFCorpus
|
1657 |
+
config: default
|
1658 |
+
split: test
|
1659 |
+
revision: None
|
1660 |
+
metrics:
|
1661 |
+
- type: map_at_1
|
1662 |
+
value: 6.9
|
1663 |
+
- type: map_at_10
|
1664 |
+
value: 13.703000000000001
|
1665 |
+
- type: map_at_100
|
1666 |
+
value: 17.251
|
1667 |
+
- type: map_at_1000
|
1668 |
+
value: 18.795
|
1669 |
+
- type: map_at_3
|
1670 |
+
value: 10.366999999999999
|
1671 |
+
- type: map_at_5
|
1672 |
+
value: 11.675
|
1673 |
+
- type: mrr_at_1
|
1674 |
+
value: 47.059
|
1675 |
+
- type: mrr_at_10
|
1676 |
+
value: 55.816
|
1677 |
+
- type: mrr_at_100
|
1678 |
+
value: 56.434
|
1679 |
+
- type: mrr_at_1000
|
1680 |
+
value: 56.467
|
1681 |
+
- type: mrr_at_3
|
1682 |
+
value: 53.973000000000006
|
1683 |
+
- type: mrr_at_5
|
1684 |
+
value: 55.257999999999996
|
1685 |
+
- type: ndcg_at_1
|
1686 |
+
value: 44.737
|
1687 |
+
- type: ndcg_at_10
|
1688 |
+
value: 35.997
|
1689 |
+
- type: ndcg_at_100
|
1690 |
+
value: 33.487
|
1691 |
+
- type: ndcg_at_1000
|
1692 |
+
value: 41.897
|
1693 |
+
- type: ndcg_at_3
|
1694 |
+
value: 41.18
|
1695 |
+
- type: ndcg_at_5
|
1696 |
+
value: 38.721
|
1697 |
+
- type: precision_at_1
|
1698 |
+
value: 46.129999999999995
|
1699 |
+
- type: precision_at_10
|
1700 |
+
value: 26.533
|
1701 |
+
- type: precision_at_100
|
1702 |
+
value: 8.706
|
1703 |
+
- type: precision_at_1000
|
1704 |
+
value: 2.16
|
1705 |
+
- type: precision_at_3
|
1706 |
+
value: 38.493
|
1707 |
+
- type: precision_at_5
|
1708 |
+
value: 33.189
|
1709 |
+
- type: recall_at_1
|
1710 |
+
value: 6.9
|
1711 |
+
- type: recall_at_10
|
1712 |
+
value: 17.488999999999997
|
1713 |
+
- type: recall_at_100
|
1714 |
+
value: 34.583000000000006
|
1715 |
+
- type: recall_at_1000
|
1716 |
+
value: 64.942
|
1717 |
+
- type: recall_at_3
|
1718 |
+
value: 11.494
|
1719 |
+
- type: recall_at_5
|
1720 |
+
value: 13.496
|
1721 |
+
- task:
|
1722 |
+
type: Retrieval
|
1723 |
+
dataset:
|
1724 |
+
type: nq
|
1725 |
+
name: MTEB NQ
|
1726 |
+
config: default
|
1727 |
+
split: test
|
1728 |
+
revision: None
|
1729 |
+
metrics:
|
1730 |
+
- type: map_at_1
|
1731 |
+
value: 33.028999999999996
|
1732 |
+
- type: map_at_10
|
1733 |
+
value: 49.307
|
1734 |
+
- type: map_at_100
|
1735 |
+
value: 50.205
|
1736 |
+
- type: map_at_1000
|
1737 |
+
value: 50.23
|
1738 |
+
- type: map_at_3
|
1739 |
+
value: 44.782
|
1740 |
+
- type: map_at_5
|
1741 |
+
value: 47.599999999999994
|
1742 |
+
- type: mrr_at_1
|
1743 |
+
value: 37.108999999999995
|
1744 |
+
- type: mrr_at_10
|
1745 |
+
value: 51.742999999999995
|
1746 |
+
- type: mrr_at_100
|
1747 |
+
value: 52.405
|
1748 |
+
- type: mrr_at_1000
|
1749 |
+
value: 52.422000000000004
|
1750 |
+
- type: mrr_at_3
|
1751 |
+
value: 48.087999999999994
|
1752 |
+
- type: mrr_at_5
|
1753 |
+
value: 50.414
|
1754 |
+
- type: ndcg_at_1
|
1755 |
+
value: 37.08
|
1756 |
+
- type: ndcg_at_10
|
1757 |
+
value: 57.236
|
1758 |
+
- type: ndcg_at_100
|
1759 |
+
value: 60.931999999999995
|
1760 |
+
- type: ndcg_at_1000
|
1761 |
+
value: 61.522
|
1762 |
+
- type: ndcg_at_3
|
1763 |
+
value: 48.93
|
1764 |
+
- type: ndcg_at_5
|
1765 |
+
value: 53.561
|
1766 |
+
- type: precision_at_1
|
1767 |
+
value: 37.08
|
1768 |
+
- type: precision_at_10
|
1769 |
+
value: 9.386
|
1770 |
+
- type: precision_at_100
|
1771 |
+
value: 1.1480000000000001
|
1772 |
+
- type: precision_at_1000
|
1773 |
+
value: 0.12
|
1774 |
+
- type: precision_at_3
|
1775 |
+
value: 22.258
|
1776 |
+
- type: precision_at_5
|
1777 |
+
value: 16.025
|
1778 |
+
- type: recall_at_1
|
1779 |
+
value: 33.028999999999996
|
1780 |
+
- type: recall_at_10
|
1781 |
+
value: 78.805
|
1782 |
+
- type: recall_at_100
|
1783 |
+
value: 94.643
|
1784 |
+
- type: recall_at_1000
|
1785 |
+
value: 99.039
|
1786 |
+
- type: recall_at_3
|
1787 |
+
value: 57.602
|
1788 |
+
- type: recall_at_5
|
1789 |
+
value: 68.253
|
1790 |
+
- task:
|
1791 |
+
type: Retrieval
|
1792 |
+
dataset:
|
1793 |
+
type: quora
|
1794 |
+
name: MTEB QuoraRetrieval
|
1795 |
+
config: default
|
1796 |
+
split: test
|
1797 |
+
revision: None
|
1798 |
+
metrics:
|
1799 |
+
- type: map_at_1
|
1800 |
+
value: 71.122
|
1801 |
+
- type: map_at_10
|
1802 |
+
value: 85.237
|
1803 |
+
- type: map_at_100
|
1804 |
+
value: 85.872
|
1805 |
+
- type: map_at_1000
|
1806 |
+
value: 85.885
|
1807 |
+
- type: map_at_3
|
1808 |
+
value: 82.27499999999999
|
1809 |
+
- type: map_at_5
|
1810 |
+
value: 84.13199999999999
|
1811 |
+
- type: mrr_at_1
|
1812 |
+
value: 81.73
|
1813 |
+
- type: mrr_at_10
|
1814 |
+
value: 87.834
|
1815 |
+
- type: mrr_at_100
|
1816 |
+
value: 87.92
|
1817 |
+
- type: mrr_at_1000
|
1818 |
+
value: 87.921
|
1819 |
+
- type: mrr_at_3
|
1820 |
+
value: 86.878
|
1821 |
+
- type: mrr_at_5
|
1822 |
+
value: 87.512
|
1823 |
+
- type: ndcg_at_1
|
1824 |
+
value: 81.73
|
1825 |
+
- type: ndcg_at_10
|
1826 |
+
value: 88.85499999999999
|
1827 |
+
- type: ndcg_at_100
|
1828 |
+
value: 89.992
|
1829 |
+
- type: ndcg_at_1000
|
1830 |
+
value: 90.07
|
1831 |
+
- type: ndcg_at_3
|
1832 |
+
value: 85.997
|
1833 |
+
- type: ndcg_at_5
|
1834 |
+
value: 87.55199999999999
|
1835 |
+
- type: precision_at_1
|
1836 |
+
value: 81.73
|
1837 |
+
- type: precision_at_10
|
1838 |
+
value: 13.491
|
1839 |
+
- type: precision_at_100
|
1840 |
+
value: 1.536
|
1841 |
+
- type: precision_at_1000
|
1842 |
+
value: 0.157
|
1843 |
+
- type: precision_at_3
|
1844 |
+
value: 37.623
|
1845 |
+
- type: precision_at_5
|
1846 |
+
value: 24.742
|
1847 |
+
- type: recall_at_1
|
1848 |
+
value: 71.122
|
1849 |
+
- type: recall_at_10
|
1850 |
+
value: 95.935
|
1851 |
+
- type: recall_at_100
|
1852 |
+
value: 99.657
|
1853 |
+
- type: recall_at_1000
|
1854 |
+
value: 99.996
|
1855 |
+
- type: recall_at_3
|
1856 |
+
value: 87.80799999999999
|
1857 |
+
- type: recall_at_5
|
1858 |
+
value: 92.161
|
1859 |
+
- task:
|
1860 |
+
type: Clustering
|
1861 |
+
dataset:
|
1862 |
+
type: mteb/reddit-clustering
|
1863 |
+
name: MTEB RedditClustering
|
1864 |
+
config: default
|
1865 |
+
split: test
|
1866 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1867 |
+
metrics:
|
1868 |
+
- type: v_measure
|
1869 |
+
value: 63.490029238193756
|
1870 |
+
- task:
|
1871 |
+
type: Clustering
|
1872 |
+
dataset:
|
1873 |
+
type: mteb/reddit-clustering-p2p
|
1874 |
+
name: MTEB RedditClusteringP2P
|
1875 |
+
config: default
|
1876 |
+
split: test
|
1877 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1878 |
+
metrics:
|
1879 |
+
- type: v_measure
|
1880 |
+
value: 65.13153408508836
|
1881 |
+
- task:
|
1882 |
+
type: Retrieval
|
1883 |
+
dataset:
|
1884 |
+
type: scidocs
|
1885 |
+
name: MTEB SCIDOCS
|
1886 |
+
config: default
|
1887 |
+
split: test
|
1888 |
+
revision: None
|
1889 |
+
metrics:
|
1890 |
+
- type: map_at_1
|
1891 |
+
value: 4.202999999999999
|
1892 |
+
- type: map_at_10
|
1893 |
+
value: 10.174
|
1894 |
+
- type: map_at_100
|
1895 |
+
value: 12.138
|
1896 |
+
- type: map_at_1000
|
1897 |
+
value: 12.418
|
1898 |
+
- type: map_at_3
|
1899 |
+
value: 7.379
|
1900 |
+
- type: map_at_5
|
1901 |
+
value: 8.727
|
1902 |
+
- type: mrr_at_1
|
1903 |
+
value: 20.7
|
1904 |
+
- type: mrr_at_10
|
1905 |
+
value: 30.389
|
1906 |
+
- type: mrr_at_100
|
1907 |
+
value: 31.566
|
1908 |
+
- type: mrr_at_1000
|
1909 |
+
value: 31.637999999999998
|
1910 |
+
- type: mrr_at_3
|
1911 |
+
value: 27.133000000000003
|
1912 |
+
- type: mrr_at_5
|
1913 |
+
value: 29.078
|
1914 |
+
- type: ndcg_at_1
|
1915 |
+
value: 20.7
|
1916 |
+
- type: ndcg_at_10
|
1917 |
+
value: 17.355999999999998
|
1918 |
+
- type: ndcg_at_100
|
1919 |
+
value: 25.151
|
1920 |
+
- type: ndcg_at_1000
|
1921 |
+
value: 30.37
|
1922 |
+
- type: ndcg_at_3
|
1923 |
+
value: 16.528000000000002
|
1924 |
+
- type: ndcg_at_5
|
1925 |
+
value: 14.396999999999998
|
1926 |
+
- type: precision_at_1
|
1927 |
+
value: 20.7
|
1928 |
+
- type: precision_at_10
|
1929 |
+
value: 8.98
|
1930 |
+
- type: precision_at_100
|
1931 |
+
value: 2.015
|
1932 |
+
- type: precision_at_1000
|
1933 |
+
value: 0.327
|
1934 |
+
- type: precision_at_3
|
1935 |
+
value: 15.367
|
1936 |
+
- type: precision_at_5
|
1937 |
+
value: 12.559999999999999
|
1938 |
+
- type: recall_at_1
|
1939 |
+
value: 4.202999999999999
|
1940 |
+
- type: recall_at_10
|
1941 |
+
value: 18.197
|
1942 |
+
- type: recall_at_100
|
1943 |
+
value: 40.903
|
1944 |
+
- type: recall_at_1000
|
1945 |
+
value: 66.427
|
1946 |
+
- type: recall_at_3
|
1947 |
+
value: 9.362
|
1948 |
+
- type: recall_at_5
|
1949 |
+
value: 12.747
|
1950 |
+
- task:
|
1951 |
+
type: STS
|
1952 |
+
dataset:
|
1953 |
+
type: mteb/sickr-sts
|
1954 |
+
name: MTEB SICK-R
|
1955 |
+
config: default
|
1956 |
+
split: test
|
1957 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1958 |
+
metrics:
|
1959 |
+
- type: cos_sim_spearman
|
1960 |
+
value: 81.69890989765257
|
1961 |
+
- task:
|
1962 |
+
type: STS
|
1963 |
+
dataset:
|
1964 |
+
type: mteb/sts12-sts
|
1965 |
+
name: MTEB STS12
|
1966 |
+
config: default
|
1967 |
+
split: test
|
1968 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1969 |
+
metrics:
|
1970 |
+
- type: cos_sim_spearman
|
1971 |
+
value: 75.31953790551489
|
1972 |
+
- task:
|
1973 |
+
type: STS
|
1974 |
+
dataset:
|
1975 |
+
type: mteb/sts13-sts
|
1976 |
+
name: MTEB STS13
|
1977 |
+
config: default
|
1978 |
+
split: test
|
1979 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1980 |
+
metrics:
|
1981 |
+
- type: cos_sim_spearman
|
1982 |
+
value: 87.44050861280759
|
1983 |
+
- task:
|
1984 |
+
type: STS
|
1985 |
+
dataset:
|
1986 |
+
type: mteb/sts14-sts
|
1987 |
+
name: MTEB STS14
|
1988 |
+
config: default
|
1989 |
+
split: test
|
1990 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1991 |
+
metrics:
|
1992 |
+
- type: cos_sim_spearman
|
1993 |
+
value: 81.86922869270393
|
1994 |
+
- task:
|
1995 |
+
type: STS
|
1996 |
+
dataset:
|
1997 |
+
type: mteb/sts15-sts
|
1998 |
+
name: MTEB STS15
|
1999 |
+
config: default
|
2000 |
+
split: test
|
2001 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2002 |
+
metrics:
|
2003 |
+
- type: cos_sim_spearman
|
2004 |
+
value: 88.9399170304284
|
2005 |
+
- task:
|
2006 |
+
type: STS
|
2007 |
+
dataset:
|
2008 |
+
type: mteb/sts16-sts
|
2009 |
+
name: MTEB STS16
|
2010 |
+
config: default
|
2011 |
+
split: test
|
2012 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2013 |
+
metrics:
|
2014 |
+
- type: cos_sim_spearman
|
2015 |
+
value: 85.38015314088582
|
2016 |
+
- task:
|
2017 |
+
type: STS
|
2018 |
+
dataset:
|
2019 |
+
type: mteb/sts17-crosslingual-sts
|
2020 |
+
name: MTEB STS17 (en-en)
|
2021 |
+
config: en-en
|
2022 |
+
split: test
|
2023 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2024 |
+
metrics:
|
2025 |
+
- type: cos_sim_spearman
|
2026 |
+
value: 90.53653527788835
|
2027 |
+
- task:
|
2028 |
+
type: STS
|
2029 |
+
dataset:
|
2030 |
+
type: mteb/sts22-crosslingual-sts
|
2031 |
+
name: MTEB STS22 (en)
|
2032 |
+
config: en
|
2033 |
+
split: test
|
2034 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2035 |
+
metrics:
|
2036 |
+
- type: cos_sim_spearman
|
2037 |
+
value: 68.64526474250209
|
2038 |
+
- task:
|
2039 |
+
type: STS
|
2040 |
+
dataset:
|
2041 |
+
type: mteb/stsbenchmark-sts
|
2042 |
+
name: MTEB STSBenchmark
|
2043 |
+
config: default
|
2044 |
+
split: test
|
2045 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2046 |
+
metrics:
|
2047 |
+
- type: cos_sim_spearman
|
2048 |
+
value: 86.56156983963042
|
2049 |
+
- task:
|
2050 |
+
type: Reranking
|
2051 |
+
dataset:
|
2052 |
+
type: mteb/scidocs-reranking
|
2053 |
+
name: MTEB SciDocsRR
|
2054 |
+
config: default
|
2055 |
+
split: test
|
2056 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2057 |
+
metrics:
|
2058 |
+
- type: map
|
2059 |
+
value: 79.48610254648003
|
2060 |
+
- type: mrr
|
2061 |
+
value: 94.02481505422682
|
2062 |
+
- task:
|
2063 |
+
type: Retrieval
|
2064 |
+
dataset:
|
2065 |
+
type: scifact
|
2066 |
+
name: MTEB SciFact
|
2067 |
+
config: default
|
2068 |
+
split: test
|
2069 |
+
revision: None
|
2070 |
+
metrics:
|
2071 |
+
- type: map_at_1
|
2072 |
+
value: 48.983
|
2073 |
+
- type: map_at_10
|
2074 |
+
value: 59.077999999999996
|
2075 |
+
- type: map_at_100
|
2076 |
+
value: 59.536
|
2077 |
+
- type: map_at_1000
|
2078 |
+
value: 59.575
|
2079 |
+
- type: map_at_3
|
2080 |
+
value: 55.691
|
2081 |
+
- type: map_at_5
|
2082 |
+
value: 57.410000000000004
|
2083 |
+
- type: mrr_at_1
|
2084 |
+
value: 51.666999999999994
|
2085 |
+
- type: mrr_at_10
|
2086 |
+
value: 60.427
|
2087 |
+
- type: mrr_at_100
|
2088 |
+
value: 60.763
|
2089 |
+
- type: mrr_at_1000
|
2090 |
+
value: 60.79900000000001
|
2091 |
+
- type: mrr_at_3
|
2092 |
+
value: 57.556
|
2093 |
+
- type: mrr_at_5
|
2094 |
+
value: 59.089000000000006
|
2095 |
+
- type: ndcg_at_1
|
2096 |
+
value: 51.666999999999994
|
2097 |
+
- type: ndcg_at_10
|
2098 |
+
value: 64.559
|
2099 |
+
- type: ndcg_at_100
|
2100 |
+
value: 66.58
|
2101 |
+
- type: ndcg_at_1000
|
2102 |
+
value: 67.64
|
2103 |
+
- type: ndcg_at_3
|
2104 |
+
value: 58.287
|
2105 |
+
- type: ndcg_at_5
|
2106 |
+
value: 61.001000000000005
|
2107 |
+
- type: precision_at_1
|
2108 |
+
value: 51.666999999999994
|
2109 |
+
- type: precision_at_10
|
2110 |
+
value: 9.067
|
2111 |
+
- type: precision_at_100
|
2112 |
+
value: 1.0170000000000001
|
2113 |
+
- type: precision_at_1000
|
2114 |
+
value: 0.11100000000000002
|
2115 |
+
- type: precision_at_3
|
2116 |
+
value: 23.0
|
2117 |
+
- type: precision_at_5
|
2118 |
+
value: 15.6
|
2119 |
+
- type: recall_at_1
|
2120 |
+
value: 48.983
|
2121 |
+
- type: recall_at_10
|
2122 |
+
value: 80.289
|
2123 |
+
- type: recall_at_100
|
2124 |
+
value: 89.43299999999999
|
2125 |
+
- type: recall_at_1000
|
2126 |
+
value: 97.667
|
2127 |
+
- type: recall_at_3
|
2128 |
+
value: 62.978
|
2129 |
+
- type: recall_at_5
|
2130 |
+
value: 69.872
|
2131 |
+
- task:
|
2132 |
+
type: PairClassification
|
2133 |
+
dataset:
|
2134 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2135 |
+
name: MTEB SprintDuplicateQuestions
|
2136 |
+
config: default
|
2137 |
+
split: test
|
2138 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2139 |
+
metrics:
|
2140 |
+
- type: cos_sim_accuracy
|
2141 |
+
value: 99.79009900990098
|
2142 |
+
- type: cos_sim_ap
|
2143 |
+
value: 94.94115052608419
|
2144 |
+
- type: cos_sim_f1
|
2145 |
+
value: 89.1260162601626
|
2146 |
+
- type: cos_sim_precision
|
2147 |
+
value: 90.599173553719
|
2148 |
+
- type: cos_sim_recall
|
2149 |
+
value: 87.7
|
2150 |
+
- type: dot_accuracy
|
2151 |
+
value: 99.79009900990098
|
2152 |
+
- type: dot_ap
|
2153 |
+
value: 94.94115052608419
|
2154 |
+
- type: dot_f1
|
2155 |
+
value: 89.1260162601626
|
2156 |
+
- type: dot_precision
|
2157 |
+
value: 90.599173553719
|
2158 |
+
- type: dot_recall
|
2159 |
+
value: 87.7
|
2160 |
+
- type: euclidean_accuracy
|
2161 |
+
value: 99.79009900990098
|
2162 |
+
- type: euclidean_ap
|
2163 |
+
value: 94.94115052608419
|
2164 |
+
- type: euclidean_f1
|
2165 |
+
value: 89.1260162601626
|
2166 |
+
- type: euclidean_precision
|
2167 |
+
value: 90.599173553719
|
2168 |
+
- type: euclidean_recall
|
2169 |
+
value: 87.7
|
2170 |
+
- type: manhattan_accuracy
|
2171 |
+
value: 99.7940594059406
|
2172 |
+
- type: manhattan_ap
|
2173 |
+
value: 94.95271414642431
|
2174 |
+
- type: manhattan_f1
|
2175 |
+
value: 89.24508790072387
|
2176 |
+
- type: manhattan_precision
|
2177 |
+
value: 92.3982869379015
|
2178 |
+
- type: manhattan_recall
|
2179 |
+
value: 86.3
|
2180 |
+
- type: max_accuracy
|
2181 |
+
value: 99.7940594059406
|
2182 |
+
- type: max_ap
|
2183 |
+
value: 94.95271414642431
|
2184 |
+
- type: max_f1
|
2185 |
+
value: 89.24508790072387
|
2186 |
+
- task:
|
2187 |
+
type: Clustering
|
2188 |
+
dataset:
|
2189 |
+
type: mteb/stackexchange-clustering
|
2190 |
+
name: MTEB StackExchangeClustering
|
2191 |
+
config: default
|
2192 |
+
split: test
|
2193 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2194 |
+
metrics:
|
2195 |
+
- type: v_measure
|
2196 |
+
value: 68.43866571935851
|
2197 |
+
- task:
|
2198 |
+
type: Clustering
|
2199 |
+
dataset:
|
2200 |
+
type: mteb/stackexchange-clustering-p2p
|
2201 |
+
name: MTEB StackExchangeClusteringP2P
|
2202 |
+
config: default
|
2203 |
+
split: test
|
2204 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2205 |
+
metrics:
|
2206 |
+
- type: v_measure
|
2207 |
+
value: 35.16579026551532
|
2208 |
+
- task:
|
2209 |
+
type: Reranking
|
2210 |
+
dataset:
|
2211 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2212 |
+
name: MTEB StackOverflowDupQuestions
|
2213 |
+
config: default
|
2214 |
+
split: test
|
2215 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2216 |
+
metrics:
|
2217 |
+
- type: map
|
2218 |
+
value: 52.518952473513934
|
2219 |
+
- type: mrr
|
2220 |
+
value: 53.292457134368895
|
2221 |
+
- task:
|
2222 |
+
type: Summarization
|
2223 |
+
dataset:
|
2224 |
+
type: mteb/summeval
|
2225 |
+
name: MTEB SummEval
|
2226 |
+
config: default
|
2227 |
+
split: test
|
2228 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2229 |
+
metrics:
|
2230 |
+
- type: cos_sim_pearson
|
2231 |
+
value: 31.12529588316604
|
2232 |
+
- type: cos_sim_spearman
|
2233 |
+
value: 32.31662126895294
|
2234 |
+
- type: dot_pearson
|
2235 |
+
value: 31.125303796647056
|
2236 |
+
- type: dot_spearman
|
2237 |
+
value: 32.31662126895294
|
2238 |
+
- task:
|
2239 |
+
type: Retrieval
|
2240 |
+
dataset:
|
2241 |
+
type: trec-covid
|
2242 |
+
name: MTEB TRECCOVID
|
2243 |
+
config: default
|
2244 |
+
split: test
|
2245 |
+
revision: None
|
2246 |
+
metrics:
|
2247 |
+
- type: map_at_1
|
2248 |
+
value: 0.219
|
2249 |
+
- type: map_at_10
|
2250 |
+
value: 1.7469999999999999
|
2251 |
+
- type: map_at_100
|
2252 |
+
value: 10.177999999999999
|
2253 |
+
- type: map_at_1000
|
2254 |
+
value: 26.108999999999998
|
2255 |
+
- type: map_at_3
|
2256 |
+
value: 0.64
|
2257 |
+
- type: map_at_5
|
2258 |
+
value: 0.968
|
2259 |
+
- type: mrr_at_1
|
2260 |
+
value: 82.0
|
2261 |
+
- type: mrr_at_10
|
2262 |
+
value: 89.067
|
2263 |
+
- type: mrr_at_100
|
2264 |
+
value: 89.067
|
2265 |
+
- type: mrr_at_1000
|
2266 |
+
value: 89.067
|
2267 |
+
- type: mrr_at_3
|
2268 |
+
value: 88.333
|
2269 |
+
- type: mrr_at_5
|
2270 |
+
value: 88.73299999999999
|
2271 |
+
- type: ndcg_at_1
|
2272 |
+
value: 78.0
|
2273 |
+
- type: ndcg_at_10
|
2274 |
+
value: 71.398
|
2275 |
+
- type: ndcg_at_100
|
2276 |
+
value: 55.574999999999996
|
2277 |
+
- type: ndcg_at_1000
|
2278 |
+
value: 51.771
|
2279 |
+
- type: ndcg_at_3
|
2280 |
+
value: 77.765
|
2281 |
+
- type: ndcg_at_5
|
2282 |
+
value: 73.614
|
2283 |
+
- type: precision_at_1
|
2284 |
+
value: 82.0
|
2285 |
+
- type: precision_at_10
|
2286 |
+
value: 75.4
|
2287 |
+
- type: precision_at_100
|
2288 |
+
value: 58.040000000000006
|
2289 |
+
- type: precision_at_1000
|
2290 |
+
value: 23.516000000000002
|
2291 |
+
- type: precision_at_3
|
2292 |
+
value: 84.0
|
2293 |
+
- type: precision_at_5
|
2294 |
+
value: 78.4
|
2295 |
+
- type: recall_at_1
|
2296 |
+
value: 0.219
|
2297 |
+
- type: recall_at_10
|
2298 |
+
value: 1.958
|
2299 |
+
- type: recall_at_100
|
2300 |
+
value: 13.797999999999998
|
2301 |
+
- type: recall_at_1000
|
2302 |
+
value: 49.881
|
2303 |
+
- type: recall_at_3
|
2304 |
+
value: 0.672
|
2305 |
+
- type: recall_at_5
|
2306 |
+
value: 1.0370000000000001
|
2307 |
+
- task:
|
2308 |
+
type: Retrieval
|
2309 |
+
dataset:
|
2310 |
+
type: webis-touche2020
|
2311 |
+
name: MTEB Touche2020
|
2312 |
+
config: default
|
2313 |
+
split: test
|
2314 |
+
revision: None
|
2315 |
+
metrics:
|
2316 |
+
- type: map_at_1
|
2317 |
+
value: 1.8610000000000002
|
2318 |
+
- type: map_at_10
|
2319 |
+
value: 8.705
|
2320 |
+
- type: map_at_100
|
2321 |
+
value: 15.164
|
2322 |
+
- type: map_at_1000
|
2323 |
+
value: 16.78
|
2324 |
+
- type: map_at_3
|
2325 |
+
value: 4.346
|
2326 |
+
- type: map_at_5
|
2327 |
+
value: 6.151
|
2328 |
+
- type: mrr_at_1
|
2329 |
+
value: 22.448999999999998
|
2330 |
+
- type: mrr_at_10
|
2331 |
+
value: 41.556
|
2332 |
+
- type: mrr_at_100
|
2333 |
+
value: 42.484
|
2334 |
+
- type: mrr_at_1000
|
2335 |
+
value: 42.494
|
2336 |
+
- type: mrr_at_3
|
2337 |
+
value: 37.755
|
2338 |
+
- type: mrr_at_5
|
2339 |
+
value: 40.102
|
2340 |
+
- type: ndcg_at_1
|
2341 |
+
value: 21.429000000000002
|
2342 |
+
- type: ndcg_at_10
|
2343 |
+
value: 23.439
|
2344 |
+
- type: ndcg_at_100
|
2345 |
+
value: 36.948
|
2346 |
+
- type: ndcg_at_1000
|
2347 |
+
value: 48.408
|
2348 |
+
- type: ndcg_at_3
|
2349 |
+
value: 22.261
|
2350 |
+
- type: ndcg_at_5
|
2351 |
+
value: 23.085
|
2352 |
+
- type: precision_at_1
|
2353 |
+
value: 22.448999999999998
|
2354 |
+
- type: precision_at_10
|
2355 |
+
value: 21.633
|
2356 |
+
- type: precision_at_100
|
2357 |
+
value: 8.02
|
2358 |
+
- type: precision_at_1000
|
2359 |
+
value: 1.5939999999999999
|
2360 |
+
- type: precision_at_3
|
2361 |
+
value: 23.810000000000002
|
2362 |
+
- type: precision_at_5
|
2363 |
+
value: 24.490000000000002
|
2364 |
+
- type: recall_at_1
|
2365 |
+
value: 1.8610000000000002
|
2366 |
+
- type: recall_at_10
|
2367 |
+
value: 15.876000000000001
|
2368 |
+
- type: recall_at_100
|
2369 |
+
value: 50.300999999999995
|
2370 |
+
- type: recall_at_1000
|
2371 |
+
value: 86.098
|
2372 |
+
- type: recall_at_3
|
2373 |
+
value: 5.892
|
2374 |
+
- type: recall_at_5
|
2375 |
+
value: 9.443
|
2376 |
+
- task:
|
2377 |
+
type: Classification
|
2378 |
+
dataset:
|
2379 |
+
type: mteb/toxic_conversations_50k
|
2380 |
+
name: MTEB ToxicConversationsClassification
|
2381 |
+
config: default
|
2382 |
+
split: test
|
2383 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2384 |
+
metrics:
|
2385 |
+
- type: accuracy
|
2386 |
+
value: 70.3264
|
2387 |
+
- type: ap
|
2388 |
+
value: 13.249577616243794
|
2389 |
+
- type: f1
|
2390 |
+
value: 53.621518367695685
|
2391 |
+
- task:
|
2392 |
+
type: Classification
|
2393 |
+
dataset:
|
2394 |
+
type: mteb/tweet_sentiment_extraction
|
2395 |
+
name: MTEB TweetSentimentExtractionClassification
|
2396 |
+
config: default
|
2397 |
+
split: test
|
2398 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2399 |
+
metrics:
|
2400 |
+
- type: accuracy
|
2401 |
+
value: 61.57611771363894
|
2402 |
+
- type: f1
|
2403 |
+
value: 61.79797478568639
|
2404 |
+
- task:
|
2405 |
+
type: Clustering
|
2406 |
+
dataset:
|
2407 |
+
type: mteb/twentynewsgroups-clustering
|
2408 |
+
name: MTEB TwentyNewsgroupsClustering
|
2409 |
+
config: default
|
2410 |
+
split: test
|
2411 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2412 |
+
metrics:
|
2413 |
+
- type: v_measure
|
2414 |
+
value: 53.38315344479284
|
2415 |
+
- task:
|
2416 |
+
type: PairClassification
|
2417 |
+
dataset:
|
2418 |
+
type: mteb/twittersemeval2015-pairclassification
|
2419 |
+
name: MTEB TwitterSemEval2015
|
2420 |
+
config: default
|
2421 |
+
split: test
|
2422 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2423 |
+
metrics:
|
2424 |
+
- type: cos_sim_accuracy
|
2425 |
+
value: 87.55438993860642
|
2426 |
+
- type: cos_sim_ap
|
2427 |
+
value: 77.98702600017738
|
2428 |
+
- type: cos_sim_f1
|
2429 |
+
value: 71.94971653931476
|
2430 |
+
- type: cos_sim_precision
|
2431 |
+
value: 67.50693802035153
|
2432 |
+
- type: cos_sim_recall
|
2433 |
+
value: 77.01846965699208
|
2434 |
+
- type: dot_accuracy
|
2435 |
+
value: 87.55438993860642
|
2436 |
+
- type: dot_ap
|
2437 |
+
value: 77.98702925907986
|
2438 |
+
- type: dot_f1
|
2439 |
+
value: 71.94971653931476
|
2440 |
+
- type: dot_precision
|
2441 |
+
value: 67.50693802035153
|
2442 |
+
- type: dot_recall
|
2443 |
+
value: 77.01846965699208
|
2444 |
+
- type: euclidean_accuracy
|
2445 |
+
value: 87.55438993860642
|
2446 |
+
- type: euclidean_ap
|
2447 |
+
value: 77.98702951957925
|
2448 |
+
- type: euclidean_f1
|
2449 |
+
value: 71.94971653931476
|
2450 |
+
- type: euclidean_precision
|
2451 |
+
value: 67.50693802035153
|
2452 |
+
- type: euclidean_recall
|
2453 |
+
value: 77.01846965699208
|
2454 |
+
- type: manhattan_accuracy
|
2455 |
+
value: 87.54246885617214
|
2456 |
+
- type: manhattan_ap
|
2457 |
+
value: 77.95531413902947
|
2458 |
+
- type: manhattan_f1
|
2459 |
+
value: 71.93605683836589
|
2460 |
+
- type: manhattan_precision
|
2461 |
+
value: 69.28152492668622
|
2462 |
+
- type: manhattan_recall
|
2463 |
+
value: 74.80211081794195
|
2464 |
+
- type: max_accuracy
|
2465 |
+
value: 87.55438993860642
|
2466 |
+
- type: max_ap
|
2467 |
+
value: 77.98702951957925
|
2468 |
+
- type: max_f1
|
2469 |
+
value: 71.94971653931476
|
2470 |
+
- task:
|
2471 |
+
type: PairClassification
|
2472 |
+
dataset:
|
2473 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2474 |
+
name: MTEB TwitterURLCorpus
|
2475 |
+
config: default
|
2476 |
+
split: test
|
2477 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2478 |
+
metrics:
|
2479 |
+
- type: cos_sim_accuracy
|
2480 |
+
value: 89.47296930182016
|
2481 |
+
- type: cos_sim_ap
|
2482 |
+
value: 86.92853616302108
|
2483 |
+
- type: cos_sim_f1
|
2484 |
+
value: 79.35138351681047
|
2485 |
+
- type: cos_sim_precision
|
2486 |
+
value: 76.74820143884892
|
2487 |
+
- type: cos_sim_recall
|
2488 |
+
value: 82.13735756082538
|
2489 |
+
- type: dot_accuracy
|
2490 |
+
value: 89.47296930182016
|
2491 |
+
- type: dot_ap
|
2492 |
+
value: 86.92854339601595
|
2493 |
+
- type: dot_f1
|
2494 |
+
value: 79.35138351681047
|
2495 |
+
- type: dot_precision
|
2496 |
+
value: 76.74820143884892
|
2497 |
+
- type: dot_recall
|
2498 |
+
value: 82.13735756082538
|
2499 |
+
- type: euclidean_accuracy
|
2500 |
+
value: 89.47296930182016
|
2501 |
+
- type: euclidean_ap
|
2502 |
+
value: 86.92854191061649
|
2503 |
+
- type: euclidean_f1
|
2504 |
+
value: 79.35138351681047
|
2505 |
+
- type: euclidean_precision
|
2506 |
+
value: 76.74820143884892
|
2507 |
+
- type: euclidean_recall
|
2508 |
+
value: 82.13735756082538
|
2509 |
+
- type: manhattan_accuracy
|
2510 |
+
value: 89.47685023479644
|
2511 |
+
- type: manhattan_ap
|
2512 |
+
value: 86.90063722679578
|
2513 |
+
- type: manhattan_f1
|
2514 |
+
value: 79.30753865502702
|
2515 |
+
- type: manhattan_precision
|
2516 |
+
value: 76.32066068631639
|
2517 |
+
- type: manhattan_recall
|
2518 |
+
value: 82.53772713273791
|
2519 |
+
- type: max_accuracy
|
2520 |
+
value: 89.47685023479644
|
2521 |
+
- type: max_ap
|
2522 |
+
value: 86.92854339601595
|
2523 |
+
- type: max_f1
|
2524 |
+
value: 79.35138351681047
|
2525 |
---
|
2526 |
|
2527 |
+
# hkunlp/instructor-xl
|
2528 |
+
We introduce **Instructor**👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨 achieves sota on 70 diverse embedding tasks!
|
2529 |
+
The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)!
|
2530 |
|
2531 |
+
**************************** **Updates** ****************************
|
2532 |
+
|
2533 |
+
* 01/21: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-xl) trained with hard negatives, which gives better performance.
|
2534 |
+
* 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-xl) and [project page](https://instructor-embedding.github.io/)! Check them out!
|
2535 |
+
|
2536 |
+
## Quick start
|
2537 |
+
<hr />
|
2538 |
|
2539 |
## Installation
|
2540 |
```bash
|
2541 |
+
pip install InstructorEmbedding
|
|
|
|
|
2542 |
```
|
2543 |
|
2544 |
## Compute your customized embeddings
|
2545 |
Then you can use the model like this to calculate domain-specific and task-aware embeddings:
|
2546 |
```python
|
2547 |
+
from InstructorEmbedding import INSTRUCTOR
|
2548 |
+
model = INSTRUCTOR('hkunlp/instructor-xl')
|
2549 |
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
|
2550 |
+
instruction = "Represent the Science title:"
|
2551 |
+
embeddings = model.encode([[instruction,sentence]])
|
|
|
2552 |
print(embeddings)
|
2553 |
```
|
2554 |
|
2555 |
+
## Use cases
|
2556 |
+
<hr />
|
2557 |
+
|
2558 |
+
## Calculate embeddings for your customized texts
|
2559 |
+
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
|
2560 |
+
|
2561 |
+
Represent the `domain` `text_type` for `task_objective`:
|
2562 |
+
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
|
2563 |
+
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
|
2564 |
+
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
|
2565 |
+
|
2566 |
## Calculate Sentence similarities
|
2567 |
You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**.
|
2568 |
```python
|
2569 |
from sklearn.metrics.pairwise import cosine_similarity
|
2570 |
+
sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'],
|
2571 |
+
['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']]
|
2572 |
+
sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'],
|
2573 |
+
['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']]
|
2574 |
embeddings_a = model.encode(sentences_a)
|
2575 |
embeddings_b = model.encode(sentences_b)
|
2576 |
similarities = cosine_similarity(embeddings_a,embeddings_b)
|
2577 |
print(similarities)
|
2578 |
+
```
|
2579 |
+
|
2580 |
+
## Information Retrieval
|
2581 |
+
You can also use **customized embeddings** for information retrieval.
|
2582 |
+
```python
|
2583 |
+
import numpy as np
|
2584 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
2585 |
+
query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']]
|
2586 |
+
corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'],
|
2587 |
+
['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"],
|
2588 |
+
['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']]
|
2589 |
+
query_embeddings = model.encode(query)
|
2590 |
+
corpus_embeddings = model.encode(corpus)
|
2591 |
+
similarities = cosine_similarity(query_embeddings,corpus_embeddings)
|
2592 |
+
retrieved_doc_id = np.argmax(similarities)
|
2593 |
+
print(retrieved_doc_id)
|
2594 |
+
```
|
2595 |
+
|
2596 |
+
## Clustering
|
2597 |
+
Use **customized embeddings** for clustering texts in groups.
|
2598 |
+
```python
|
2599 |
+
import sklearn.cluster
|
2600 |
+
sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'],
|
2601 |
+
['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'],
|
2602 |
+
['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'],
|
2603 |
+
['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"],
|
2604 |
+
['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']]
|
2605 |
+
embeddings = model.encode(sentences)
|
2606 |
+
clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2)
|
2607 |
+
clustering_model.fit(embeddings)
|
2608 |
+
cluster_assignment = clustering_model.labels_
|
2609 |
+
print(cluster_assignment)
|
2610 |
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
"T5EncoderModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/home2/huggingface/outputs/xl_30000_fever/checkpoint-300/",
|
3 |
"architectures": [
|
4 |
"T5EncoderModel"
|
5 |
],
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4963705019
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b065dd74cb4423b155cada6ebf11f97cdcb67b2f10841a8a810d674b10bbf99
|
3 |
size 4963705019
|
tokenizer_config.json
CHANGED
@@ -104,7 +104,7 @@
|
|
104 |
"eos_token": "</s>",
|
105 |
"extra_ids": 100,
|
106 |
"model_max_length": 512,
|
107 |
-
"name_or_path": "
|
108 |
"pad_token": "<pad>",
|
109 |
"special_tokens_map_file": null,
|
110 |
"tokenizer_class": "T5Tokenizer",
|
|
|
104 |
"eos_token": "</s>",
|
105 |
"extra_ids": 100,
|
106 |
"model_max_length": 512,
|
107 |
+
"name_or_path": "/home2/huggingface/outputs/xl_30000_fever/checkpoint-300",
|
108 |
"pad_token": "<pad>",
|
109 |
"special_tokens_map_file": null,
|
110 |
"tokenizer_class": "T5Tokenizer",
|