File size: 1,661 Bytes
7777e6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650e1b
89b676a
7777e6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7978995
2650e1b
 
7777e6c
2650e1b
7777e6c
 
 
 
2650e1b
7777e6c
 
 
2650e1b
 
89b676a
 
 
 
 
7777e6c
 
 
 
 
 
 
6c19ed1
7777e6c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: Mistral-7B-v0.1_case-briefs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B-v0.1_case-briefs

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1293

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1008        | 0.34  | 50   | 1.1495          |
| 1.0662        | 0.68  | 100  | 1.1313          |
| 1.039         | 1.02  | 150  | 1.1258          |
| 1.0173        | 1.36  | 200  | 1.1321          |
| 1.0279        | 1.7   | 250  | 1.1293          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.17.1
- Tokenizers 0.15.1