File size: 5,871 Bytes
34093da 31ba759 34093da ad7c6cc 34093da 31ba759 34093da 31ba759 34093da 31ba759 34093da ad7c6cc 312f1a5 ad7c6cc 31ba759 34093da 31ba759 cf92ada ba771dc 98a95c4 cf92ada ba771dc cf92ada dc4c29d cf92ada 31ba759 8bbd2bd 31ba759 8bbd2bd 31ba759 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
language:
- en
library_name: transformers
tags:
- multimodal
- aria
---
<!-- <p align="center">
<br>Aria</br>
</p> -->
# Aria Model Card
<!--
- Aria is the **first open multimodal native MoE** model, capable of seamlessly handling various input modalities within a MoE architecture.
- Aria performs **on par with GPT-4o mini and Gemini 1.5 Flash** across a range of multimodal tasks while maintaining strong performance on **text**-only tasks.
- Compared to similar or even larger models, Aria boasts **faster speeds** and **lower costs**. This high efficiency stems from its ability to activate only 3.9B parameters during inference – the **fewest** among models with comparable performance.
-->
## Key features
- **SoTA Multimodal Native Performance**: Aria achieves strong performance on a wide range of multimodal, language, and coding tasks. It is superior in video and document understanding.
- **Lightweight and Fast**: Aria is a mixture-of-expert model with 3.9B activated parameters per token. It efficently encodes visual input of variable sizes and aspect ratios.
- **Long Multimodal Context Window**: Aria supports multimodal input of up to 64K tokens. It can caption a 256-frame video in 10 seconds.
<p align="center">
🔗 <a href="https://rhymes.ai/" target="_blank"> Try Aria!</a> · 📖 <a href="https://www.rhymes.ai/blog-details/aria-first-open-multimodal-native-moe-model" target="_blank">Blog</a> · 📌 <a href="https://arxiv.org/pdf/2410.05993" target="_blank">Paper</a>
· ⭐<a href="https://github.com/rhymes-ai/Aria" target="_blank">GitHub</a>
</p>
<!-- # Model Info
| Model | Download | Parameter | Context Length |
| :---- | :------- | :------------ | :------ |
| Aria | < HF link - TBD> | • Activation: 3.9B (3.5B MoE + 0.4B Visual Encoder) <br> • Total: 25.3B | 64K | -->
## Benchmark
| Category | Benchmark | Aria | Pixtral 12B | Llama3.2 11B | GPT-4o mini | Gemini-1.5 Flash |
|:-------------------------------------|:-------------------|:--------:|:-------------:|:--------------:|:-------------:|:------------------:|
| **Knowledge (Multimodal)** | MMMU | 54.9 | 52.5 | 50.7 | 59.4 | 56.1 |
| **Math (Multimodal)** | MathVista | 66.1 | 58.0 | 51.5 | - | 58.4 |
| **Document** | DocQA | 92.6 | 90.7 | 84.4 | - | 89.9 |
| **Chart** | ChartQA | 86.4 | 81.8 | 83.4 | - | 85.4 |
| **Scene Text** | TextVQA | 81.1 | - | - | - | 78.7 |
| **General Visual QA** | MMBench-1.1 | 80.3 | - | - | 76.0 | - |
| **Video Understanding** | LongVideoBench | 65.3 | 47.4 | 45.7 | 58.8 | 62.4 |
| **Knowledge (Language)** | MMLU (5-shot) | 73.3 | 69.2 | 69.4 | - | 78.9 |
| **Math (Language)** | MATH | 50.8 | 48.1 | 51.9 | 70.2 | - |
| **Reasoning (Language)** | ARC Challenge | 91.0 | - | 83.4 | 96.4 | - |
| **Coding** | HumanEval | 73.2 | 72.0 | 72.6 | 87.2 | 74.3 |
## Quick Start
### Installation
```
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
pip install flash-attn --no-build-isolation
# For better performance, you can install grouped-gemm, which may take 3-5 minutes to install
pip install grouped_gemm==0.1.6
```
### Inference
Aria has 25.3B total parameters, it can be loaded in one A100 (80GB) GPU with bfloat16 precision.
Here is a code snippet to show you how to use Aria.
```python
import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
model_id_or_path = "rhymes-ai/Aria"
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
image = Image.open(requests.get(image_path, stream=True).raw)
messages = [
{
"role": "user",
"content": [
{"text": None, "type": "image"},
{"text": "what is the image?", "type": "text"},
],
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
output = model.generate(
**inputs,
max_new_tokens=500,
stop_strings=["<|im_end|>"],
tokenizer=processor.tokenizer,
do_sample=True,
temperature=0.9,
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
result = processor.decode(output_ids, skip_special_tokens=True)
print(result)
```
### Advanced Inference and Fine-tuning
We provide a [codebase](https://github.com/rhymes-ai/Aria) for more advanced usage of Aria,
including vllm inference, cookbooks, and fine-tuning on custom datasets.
## Citation
If you find our work helpful, please consider citing.
```
@article{aria,
title={},
author={},
year={2024},
journal={}
}
``` |