---
license: mit
tags:
- generated_from_trainer
model-index:
- name: bert_base_tcm_teste
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_base_tcm_teste

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0155
- Criterio Julgamento Precision: 0.7965
- Criterio Julgamento Recall: 0.8654
- Criterio Julgamento F1: 0.8295
- Criterio Julgamento Number: 104
- Data Sessao Precision: 0.7162
- Data Sessao Recall: 0.9636
- Data Sessao F1: 0.8217
- Data Sessao Number: 55
- Modalidade Licitacao Precision: 0.9554
- Modalidade Licitacao Recall: 0.9667
- Modalidade Licitacao F1: 0.9610
- Modalidade Licitacao Number: 421
- Numero Exercicio Precision: 0.9323
- Numero Exercicio Recall: 0.9676
- Numero Exercicio F1: 0.9496
- Numero Exercicio Number: 185
- Objeto Licitacao Precision: 0.5270
- Objeto Licitacao Recall: 0.6610
- Objeto Licitacao F1: 0.5865
- Objeto Licitacao Number: 59
- Valor Objeto Precision: 0.8444
- Valor Objeto Recall: 0.9268
- Valor Objeto F1: 0.8837
- Valor Objeto Number: 41
- Overall Precision: 0.8723
- Overall Recall: 0.9318
- Overall F1: 0.9011
- Overall Accuracy: 0.9966

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Criterio Julgamento Precision | Criterio Julgamento Recall | Criterio Julgamento F1 | Criterio Julgamento Number | Data Sessao Precision | Data Sessao Recall | Data Sessao F1 | Data Sessao Number | Modalidade Licitacao Precision | Modalidade Licitacao Recall | Modalidade Licitacao F1 | Modalidade Licitacao Number | Numero Exercicio Precision | Numero Exercicio Recall | Numero Exercicio F1 | Numero Exercicio Number | Objeto Licitacao Precision | Objeto Licitacao Recall | Objeto Licitacao F1 | Objeto Licitacao Number | Valor Objeto Precision | Valor Objeto Recall | Valor Objeto F1 | Valor Objeto Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------------:|:---------------------------:|:-----------------------:|:---------------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0193        | 0.96  | 2750  | 0.0190          | 0.7016                        | 0.8365                     | 0.7632                 | 104                        | 0.6585                | 0.9818             | 0.7883         | 55                 | 0.9446                         | 0.9715                      | 0.9578                  | 421                         | 0.9036                     | 0.9622                  | 0.9319              | 185                     | 0.2261                     | 0.4407                  | 0.2989              | 59                      | 0.7                    | 0.8537              | 0.7692          | 41                  | 0.7882            | 0.9121         | 0.8457     | 0.9946           |
| 0.0165        | 1.92  | 5500  | 0.0133          | 0.7203                        | 0.8173                     | 0.7658                 | 104                        | 0.675                 | 0.9818             | 0.8            | 55                 | 0.9447                         | 0.9739                      | 0.9591                  | 421                         | 0.9430                     | 0.9838                  | 0.9630              | 185                     | 0.4691                     | 0.6441                  | 0.5429              | 59                      | 0.8043                 | 0.9024              | 0.8506          | 41                  | 0.8466            | 0.9318         | 0.8872     | 0.9964           |
| 0.0089        | 2.88  | 8250  | 0.0150          | 0.7636                        | 0.8077                     | 0.7850                 | 104                        | 0.7895                | 0.8182             | 0.8036         | 55                 | 0.9491                         | 0.9739                      | 0.9613                  | 421                         | 0.9282                     | 0.9784                  | 0.9526              | 185                     | 0.4444                     | 0.6102                  | 0.5143              | 59                      | 0.8636                 | 0.9268              | 0.8941          | 41                  | 0.8640            | 0.9179         | 0.8901     | 0.9965           |
| 0.0066        | 3.84  | 11000 | 0.0150          | 0.7692                        | 0.8654                     | 0.8145                 | 104                        | 0.7333                | 0.8                | 0.7652         | 55                 | 0.9464                         | 0.9644                      | 0.9553                  | 421                         | 0.9278                     | 0.9730                  | 0.9499              | 185                     | 0.5                        | 0.6780                  | 0.5755              | 59                      | 0.7708                 | 0.9024              | 0.8315          | 41                  | 0.8588            | 0.9214         | 0.8890     | 0.9966           |
| 0.0055        | 4.8   | 13750 | 0.0176          | 0.75                          | 0.8654                     | 0.8036                 | 104                        | 0.7903                | 0.8909             | 0.8376         | 55                 | 0.9490                         | 0.9715                      | 0.9601                  | 421                         | 0.9326                     | 0.9730                  | 0.9524              | 185                     | 0.4568                     | 0.6271                  | 0.5286              | 59                      | 0.7872                 | 0.9024              | 0.8409          | 41                  | 0.8587            | 0.9272         | 0.8916     | 0.9963           |
| 0.0066        | 5.76  | 16500 | 0.0155          | 0.7965                        | 0.8654                     | 0.8295                 | 104                        | 0.7162                | 0.9636             | 0.8217         | 55                 | 0.9554                         | 0.9667                      | 0.9610                  | 421                         | 0.9323                     | 0.9676                  | 0.9496              | 185                     | 0.5270                     | 0.6610                  | 0.5865              | 59                      | 0.8444                 | 0.9268              | 0.8837          | 41                  | 0.8723            | 0.9318         | 0.9011     | 0.9966           |
| 0.0031        | 6.72  | 19250 | 0.0181          | 0.775                         | 0.8942                     | 0.8304                 | 104                        | 0.7879                | 0.9455             | 0.8595         | 55                 | 0.9533                         | 0.9691                      | 0.9611                  | 421                         | 0.9326                     | 0.9730                  | 0.9524              | 185                     | 0.4875                     | 0.6610                  | 0.5612              | 59                      | 0.8261                 | 0.9268              | 0.8736          | 41                  | 0.8682            | 0.9364         | 0.9010     | 0.9965           |
| 0.0066        | 7.68  | 22000 | 0.0192          | 0.7798                        | 0.8173                     | 0.7981                 | 104                        | 0.6986                | 0.9273             | 0.7969         | 55                 | 0.9353                         | 0.9620                      | 0.9485                  | 421                         | 0.8995                     | 0.9676                  | 0.9323              | 185                     | 0.4                        | 0.5763                  | 0.4722              | 59                      | 0.7551                 | 0.9024              | 0.8222          | 41                  | 0.8344            | 0.9145         | 0.8726     | 0.9961           |
| 0.0052        | 8.64  | 24750 | 0.0201          | 0.8036                        | 0.8654                     | 0.8333                 | 104                        | 0.7869                | 0.8727             | 0.8276         | 55                 | 0.9465                         | 0.9667                      | 0.9565                  | 421                         | 0.9326                     | 0.9730                  | 0.9524              | 185                     | 0.5060                     | 0.7119                  | 0.5915              | 59                      | 0.8043                 | 0.9024              | 0.8506          | 41                  | 0.8692            | 0.9295         | 0.8983     | 0.9966           |
| 0.0015        | 9.61  | 27500 | 0.0202          | 0.7838                        | 0.8365                     | 0.8093                 | 104                        | 0.7313                | 0.8909             | 0.8033         | 55                 | 0.9482                         | 0.9572                      | 0.9527                  | 421                         | 0.9326                     | 0.9730                  | 0.9524              | 185                     | 0.4865                     | 0.6102                  | 0.5414              | 59                      | 0.8043                 | 0.9024              | 0.8506          | 41                  | 0.8646            | 0.9156         | 0.8894     | 0.9966           |
| 0.0015        | 10.57 | 30250 | 0.0225          | 0.7798                        | 0.8173                     | 0.7981                 | 104                        | 0.6912                | 0.8545             | 0.7642         | 55                 | 0.9508                         | 0.9644                      | 0.9575                  | 421                         | 0.9375                     | 0.9730                  | 0.9549              | 185                     | 0.5395                     | 0.6949                  | 0.6074              | 59                      | 0.8478                 | 0.9512              | 0.8966          | 41                  | 0.8693            | 0.9225         | 0.8951     | 0.9964           |


### Framework versions

- Transformers 4.21.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1