--- license: apache-2.0 base_model: LaLegumbreArtificial/Fraunhofer_Classical tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Fraunhofer_Classical_multiclass_1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.99075 --- # Fraunhofer_Classical_multiclass_1 This model is a fine-tuned version of [LaLegumbreArtificial/Fraunhofer_Classical](https://huggingface.co/LaLegumbreArtificial/Fraunhofer_Classical) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0275 - Accuracy: 0.9908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0756 | 1.0 | 146 | 0.1135 | 0.9647 | | 0.0435 | 2.0 | 292 | 0.0648 | 0.9785 | | 0.0536 | 3.0 | 438 | 0.0442 | 0.984 | | 0.0389 | 4.0 | 584 | 0.0285 | 0.9898 | | 0.0292 | 5.0 | 730 | 0.0275 | 0.9908 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1