Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: microsoft/Orca-2-13b
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: qlora-out
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
15 |
+
# qlora-out
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.9190
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0002
|
39 |
+
- train_batch_size: 1
|
40 |
+
- eval_batch_size: 1
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 2
|
43 |
+
- total_train_batch_size: 2
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: cosine
|
46 |
+
- lr_scheduler_warmup_steps: 10
|
47 |
+
- num_epochs: 1
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
53 |
+
| No log | 0.0 | 1 | 3.2585 |
|
54 |
+
| 1.9811 | 0.05 | 536 | 2.0113 |
|
55 |
+
| 1.9507 | 0.1 | 1072 | 1.9877 |
|
56 |
+
| 1.9576 | 0.15 | 1608 | 1.9766 |
|
57 |
+
| 1.9308 | 0.2 | 2144 | 1.9671 |
|
58 |
+
| 1.9193 | 0.25 | 2680 | 1.9597 |
|
59 |
+
| 1.8522 | 0.3 | 3216 | 1.9530 |
|
60 |
+
| 1.895 | 0.35 | 3752 | 1.9483 |
|
61 |
+
| 1.869 | 0.4 | 4288 | 1.9432 |
|
62 |
+
| 1.8664 | 0.45 | 4824 | 1.9383 |
|
63 |
+
| 1.8661 | 0.5 | 5360 | 1.9347 |
|
64 |
+
| 1.8576 | 0.55 | 5896 | 1.9337 |
|
65 |
+
| 1.8573 | 0.6 | 6432 | 1.9286 |
|
66 |
+
| 1.8665 | 0.65 | 6968 | 1.9280 |
|
67 |
+
| 1.8429 | 0.7 | 7504 | 1.9243 |
|
68 |
+
| 1.8621 | 0.75 | 8040 | 1.9221 |
|
69 |
+
| 1.8074 | 0.8 | 8576 | 1.9209 |
|
70 |
+
| 1.8199 | 0.85 | 9112 | 1.9202 |
|
71 |
+
| 1.8733 | 0.9 | 9648 | 1.9193 |
|
72 |
+
| 1.8387 | 0.95 | 10184 | 1.9190 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.35.1
|
78 |
+
- Pytorch 2.1.0+cu121
|
79 |
+
- Datasets 2.14.7
|
80 |
+
- Tokenizers 0.14.1
|