version 2: trained on CC100 and Wikipedia
Browse files- README.md +2 -1
- config.json +5 -0
- pytorch_model.bin +2 -2
- tf_model.h5 +1 -1
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -11,6 +11,7 @@ tags:
|
|
11 |
license: mit
|
12 |
datasets:
|
13 |
- cc100
|
|
|
14 |
---
|
15 |
|
16 |
# japanese-gpt2-medium
|
@@ -36,7 +37,7 @@ model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt2-medium")
|
|
36 |
A 24-layer, 1024-hidden-size transformer-based language model.
|
37 |
|
38 |
# Training
|
39 |
-
The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) to optimize a traditional language modelling objective on 8\\*V100 GPUs for around 30 days. It reaches around 18 perplexity on a chosen validation set from the same data.
|
40 |
|
41 |
# Tokenization
|
42 |
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script.
|
|
|
11 |
license: mit
|
12 |
datasets:
|
13 |
- cc100
|
14 |
+
- wikipedia
|
15 |
---
|
16 |
|
17 |
# japanese-gpt2-medium
|
|
|
37 |
A 24-layer, 1024-hidden-size transformer-based language model.
|
38 |
|
39 |
# Training
|
40 |
+
The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective on 8\\*V100 GPUs for around 30 days. It reaches around 18 perplexity on a chosen validation set from the same data.
|
41 |
|
42 |
# Tokenization
|
43 |
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script.
|
config.json
CHANGED
@@ -7,8 +7,10 @@
|
|
7 |
"bos_token_id": 1,
|
8 |
"embd_pdrop": 0.1,
|
9 |
"eos_token_id": 2,
|
|
|
10 |
"initializer_range": 0.02,
|
11 |
"layer_norm_epsilon": 1e-05,
|
|
|
12 |
"n_ctx": 1024,
|
13 |
"n_embd": 1024,
|
14 |
"n_head": 16,
|
@@ -16,6 +18,7 @@
|
|
16 |
"n_layer": 24,
|
17 |
"n_positions": 1024,
|
18 |
"resid_pdrop": 0.1,
|
|
|
19 |
"summary_activation": null,
|
20 |
"summary_first_dropout": 0.1,
|
21 |
"summary_proj_to_labels": true,
|
@@ -27,5 +30,7 @@
|
|
27 |
"max_length": 50
|
28 |
}
|
29 |
},
|
|
|
|
|
30 |
"vocab_size": 32000
|
31 |
}
|
|
|
7 |
"bos_token_id": 1,
|
8 |
"embd_pdrop": 0.1,
|
9 |
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
"initializer_range": 0.02,
|
12 |
"layer_norm_epsilon": 1e-05,
|
13 |
+
"model_type": "gpt2",
|
14 |
"n_ctx": 1024,
|
15 |
"n_embd": 1024,
|
16 |
"n_head": 16,
|
|
|
18 |
"n_layer": 24,
|
19 |
"n_positions": 1024,
|
20 |
"resid_pdrop": 0.1,
|
21 |
+
"scale_attn_weights": true,
|
22 |
"summary_activation": null,
|
23 |
"summary_first_dropout": 0.1,
|
24 |
"summary_proj_to_labels": true,
|
|
|
30 |
"max_length": 50
|
31 |
}
|
32 |
},
|
33 |
+
"transformers_version": "4.8.2",
|
34 |
+
"use_cache": true,
|
35 |
"vocab_size": 32000
|
36 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e260ffe881d681a84d78e80c4e5c0b385c32158b7528475ff4c3f462e67e779b
|
3 |
+
size 1369804067
|
tf_model.h5
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1344847720
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:936ff8c2b9400fce9a0de200ff3e63db8bb605bad9cf2e8b4dd6ed7e14861eac
|
3 |
size 1344847720
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "[PAD]", "additional_special_tokens": [], "bos_token": "<s>", "cls_token": "[CLS]", "sep_token": "[SEP]", "mask_token": "[MASK]", "do_lower_case": true, "
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "[PAD]", "extra_ids": 0, "additional_special_tokens": [], "sp_model_kwargs": {}, "bos_token": "<s>", "cls_token": "[CLS]", "sep_token": "[SEP]", "mask_token": "[MASK]", "do_lower_case": true, "tokenizer_class": "T5Tokenizer"}
|