Update handler.py
Browse files- handler.py +8 -5
handler.py
CHANGED
@@ -12,16 +12,19 @@ class EndpointHandler():
|
|
12 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
13 |
"""
|
14 |
data args:
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
Return:
|
18 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
19 |
"""
|
20 |
-
|
|
|
21 |
|
22 |
# decode base64 image to PIL
|
23 |
-
image = Image.open(BytesIO(base64.b64decode(inputs
|
24 |
|
25 |
# run prediction one image wit provided candiates
|
26 |
-
prediction = self.pipeline(images=[image], candidate_labels=
|
27 |
return prediction[0]
|
|
|
12 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
13 |
"""
|
14 |
data args:
|
15 |
+
parameters: {
|
16 |
+
candidate_labels: List[str]
|
17 |
+
}
|
18 |
+
inputs: str
|
19 |
Return:
|
20 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
21 |
"""
|
22 |
+
parameters = data.get("parameters", {})
|
23 |
+
inputs = data.get("inputs", "")
|
24 |
|
25 |
# decode base64 image to PIL
|
26 |
+
image = Image.open(BytesIO(base64.b64decode(inputs)))
|
27 |
|
28 |
# run prediction one image wit provided candiates
|
29 |
+
prediction = self.pipeline(images=[image], candidate_labels=parameters.get("candidate_labels", []))
|
30 |
return prediction[0]
|