rishavranaut commited on
Commit
593f020
·
verified ·
1 Parent(s): db142d2

rishavranaut/LLAMA3_8b_LORA_FOR_CLASSIFICATION

Browse files
README.md CHANGED
@@ -1,3 +1,119 @@
1
  ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: llama3
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: meta-llama/Meta-Llama-3-8B
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: LLAMA3_8b_LORA_FOR_CLASSIFICATION
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # LLAMA3_8b_LORA_FOR_CLASSIFICATION
18
+
19
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6062
22
+ - Balanced Accuracy: 0.86
23
+ - Accuracy: 0.86
24
+ - Micro F1: 0.86
25
+ - Macro F1: 0.8600
26
+ - Weighted F1: 0.8600
27
+ - Classification Report: precision recall f1-score support
28
+
29
+ 0 0.86 0.85 0.86 200
30
+ 1 0.86 0.86 0.86 200
31
+
32
+ accuracy 0.86 400
33
+ macro avg 0.86 0.86 0.86 400
34
+ weighted avg 0.86 0.86 0.86 400
35
+
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0001
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 5
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Accuracy | Balanced Accuracy | Classification Report | Validation Loss | Macro F1 | Micro F1 | Weighted F1 |
65
+ |:-------------:|:-----:|:----:|:--------:|:-----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|:--------:|:--------:|:-----------:|
66
+ | 0.5306 | 1.0 | 732 | 0.8125 | 0.8125 | precision recall f1-score support
67
+
68
+ 0 0.76 0.92 0.83 200
69
+ 1 0.90 0.70 0.79 200
70
+
71
+ accuracy 0.81 400
72
+ macro avg 0.83 0.81 0.81 400
73
+ weighted avg 0.83 0.81 0.81 400
74
+ | 0.4840 | 0.8103 | 0.8125 | 0.8103 |
75
+ | 0.4284 | 2.0 | 1464 | 0.4444 | 0.815 | 0.815 | 0.815 | 0.8147 | 0.8147 | precision recall f1-score support
76
+
77
+ 0 0.84 0.78 0.81 200
78
+ 1 0.79 0.85 0.82 200
79
+
80
+ accuracy 0.81 400
81
+ macro avg 0.82 0.81 0.81 400
82
+ weighted avg 0.82 0.81 0.81 400
83
+ |
84
+ | 0.3809 | 3.0 | 2196 | 0.4513 | 0.8475 | 0.8475 | 0.8475 | 0.8470 | 0.8470 | precision recall f1-score support
85
+
86
+ 0 0.81 0.91 0.86 200
87
+ 1 0.89 0.79 0.84 200
88
+
89
+ accuracy 0.85 400
90
+ macro avg 0.85 0.85 0.85 400
91
+ weighted avg 0.85 0.85 0.85 400
92
+ |
93
+ | 0.2413 | 4.0 | 2928 | 0.5228 | 0.87 | 0.87 | 0.87 | 0.8700 | 0.8700 | precision recall f1-score support
94
+
95
+ 0 0.87 0.86 0.87 200
96
+ 1 0.87 0.88 0.87 200
97
+
98
+ accuracy 0.87 400
99
+ macro avg 0.87 0.87 0.87 400
100
+ weighted avg 0.87 0.87 0.87 400
101
+ |
102
+ | 0.1499 | 5.0 | 3660 | 0.6062 | 0.86 | 0.86 | 0.86 | 0.8600 | 0.8600 | precision recall f1-score support
103
+
104
+ 0 0.86 0.85 0.86 200
105
+ 1 0.86 0.86 0.86 200
106
+
107
+ accuracy 0.86 400
108
+ macro avg 0.86 0.86 0.86 400
109
+ weighted avg 0.86 0.86 0.86 400
110
+ |
111
+
112
+
113
+ ### Framework versions
114
+
115
+ - PEFT 0.11.1
116
+ - Transformers 4.41.2
117
+ - Pytorch 2.3.0+cu121
118
+ - Datasets 2.19.1
119
+ - Tokenizers 0.19.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d19be395fd6b414b45d5fd7bf099e73e991d0db2873e67fa75be3f56f9bd15e4
3
  size 54593240
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e35bb30bf58f92f660383c5a379326a84a1d7c8d17d466cf066379d5d6edbb0a
3
  size 54593240
runs/Jun26_20-23-12_iit-p/events.out.tfevents.1719413593.iit-p CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8ab87d98fddffa2af2517847fb635747189bbcc1afebb842b3d50752c6bda713
3
- size 12793
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c02703c795ad4c3c03f7bab53a1cf040167dcb357d08a271a18e5e08b0e7205
3
+ size 14112