--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 metrics: - accuracy - precision - recall model-index: - name: Mistral_final_Task2_2.0 results: [] --- # Mistral_final_Task2_2.0 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5570 - Accuracy: 0.8943 - Precision: 0.9184 - Recall: 0.8661 - F1 score: 0.8915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.9274 | 0.5450 | 200 | 0.6669 | 0.8371 | 0.9072 | 0.7521 | 0.8224 | | 0.5321 | 1.0899 | 400 | 1.0293 | 0.7986 | 0.9861 | 0.6068 | 0.7513 | | 0.4279 | 1.6349 | 600 | 1.0278 | 0.7586 | 0.6904 | 0.9402 | 0.7961 | | 0.3054 | 2.1798 | 800 | 0.4428 | 0.8714 | 0.8575 | 0.8917 | 0.8743 | | 0.2297 | 2.7248 | 1000 | 0.5243 | 0.8743 | 0.9428 | 0.7977 | 0.8642 | | 0.1798 | 3.2698 | 1200 | 0.4710 | 0.8971 | 0.9043 | 0.8889 | 0.8966 | | 0.158 | 3.8147 | 1400 | 0.5673 | 0.8986 | 0.9545 | 0.8376 | 0.8923 | | 0.0921 | 4.3597 | 1600 | 0.5847 | 0.8743 | 0.8380 | 0.9288 | 0.8811 | | 0.063 | 4.9046 | 1800 | 0.5570 | 0.8943 | 0.9184 | 0.8661 | 0.8915 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1