File size: 14,290 Bytes
905d005
 
 
 
7156b18
 
905d005
 
 
 
 
 
 
 
 
 
 
7156b18
905d005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: other
base_model: nvidia/mit-b5
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: ecc_segformerv1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ecc_segformerv1

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1935
- Mean Iou: 0.1871
- Mean Accuracy: 0.3741
- Overall Accuracy: 0.3741
- Accuracy Background: nan
- Accuracy Crack: 0.3741
- Iou Background: 0.0
- Iou Crack: 0.3741

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.0921        | 1.0   | 133   | 0.1236          | 0.0883   | 0.1766        | 0.1766           | nan                 | 0.1766         | 0.0            | 0.1766    |
| 0.0673        | 2.0   | 266   | 0.1418          | 0.1519   | 0.3038        | 0.3038           | nan                 | 0.3038         | 0.0            | 0.3038    |
| 0.0706        | 3.0   | 399   | 0.1176          | 0.1469   | 0.2939        | 0.2939           | nan                 | 0.2939         | 0.0            | 0.2939    |
| 0.0642        | 4.0   | 532   | 0.1395          | 0.1961   | 0.3922        | 0.3922           | nan                 | 0.3922         | 0.0            | 0.3922    |
| 0.0569        | 5.0   | 665   | 0.1948          | 0.2044   | 0.4088        | 0.4088           | nan                 | 0.4088         | 0.0            | 0.4088    |
| 0.0654        | 6.0   | 798   | 0.1559          | 0.1727   | 0.3455        | 0.3455           | nan                 | 0.3455         | 0.0            | 0.3455    |
| 0.0551        | 7.0   | 931   | 0.1127          | 0.1812   | 0.3624        | 0.3624           | nan                 | 0.3624         | 0.0            | 0.3624    |
| 0.0631        | 8.0   | 1064  | 0.1901          | 0.1949   | 0.3898        | 0.3898           | nan                 | 0.3898         | 0.0            | 0.3898    |
| 0.0521        | 9.0   | 1197  | 0.1428          | 0.2037   | 0.4073        | 0.4073           | nan                 | 0.4073         | 0.0            | 0.4073    |
| 0.0546        | 10.0  | 1330  | 0.1569          | 0.0876   | 0.1751        | 0.1751           | nan                 | 0.1751         | 0.0            | 0.1751    |
| 0.056         | 11.0  | 1463  | 0.1042          | 0.2267   | 0.4534        | 0.4534           | nan                 | 0.4534         | 0.0            | 0.4534    |
| 0.0541        | 12.0  | 1596  | 0.1309          | 0.1844   | 0.3688        | 0.3688           | nan                 | 0.3688         | 0.0            | 0.3688    |
| 0.0489        | 13.0  | 1729  | 0.1364          | 0.1746   | 0.3493        | 0.3493           | nan                 | 0.3493         | 0.0            | 0.3493    |
| 0.0531        | 14.0  | 1862  | 0.1058          | 0.1605   | 0.3210        | 0.3210           | nan                 | 0.3210         | 0.0            | 0.3210    |
| 0.0467        | 15.0  | 1995  | 0.0952          | 0.2214   | 0.4427        | 0.4427           | nan                 | 0.4427         | 0.0            | 0.4427    |
| 0.0485        | 16.0  | 2128  | 0.1370          | 0.1934   | 0.3868        | 0.3868           | nan                 | 0.3868         | 0.0            | 0.3868    |
| 0.0453        | 17.0  | 2261  | 0.1215          | 0.1664   | 0.3329        | 0.3329           | nan                 | 0.3329         | 0.0            | 0.3329    |
| 0.0486        | 18.0  | 2394  | 0.1058          | 0.2284   | 0.4569        | 0.4569           | nan                 | 0.4569         | 0.0            | 0.4569    |
| 0.048         | 19.0  | 2527  | 0.1253          | 0.2056   | 0.4112        | 0.4112           | nan                 | 0.4112         | 0.0            | 0.4112    |
| 0.0428        | 20.0  | 2660  | 0.1319          | 0.2064   | 0.4128        | 0.4128           | nan                 | 0.4128         | 0.0            | 0.4128    |
| 0.0423        | 21.0  | 2793  | 0.1310          | 0.2076   | 0.4151        | 0.4151           | nan                 | 0.4151         | 0.0            | 0.4151    |
| 0.0386        | 22.0  | 2926  | 0.1163          | 0.2077   | 0.4154        | 0.4154           | nan                 | 0.4154         | 0.0            | 0.4154    |
| 0.0412        | 23.0  | 3059  | 0.1065          | 0.1723   | 0.3446        | 0.3446           | nan                 | 0.3446         | 0.0            | 0.3446    |
| 0.0433        | 24.0  | 3192  | 0.1071          | 0.2001   | 0.4001        | 0.4001           | nan                 | 0.4001         | 0.0            | 0.4001    |
| 0.0359        | 25.0  | 3325  | 0.1016          | 0.2023   | 0.4045        | 0.4045           | nan                 | 0.4045         | 0.0            | 0.4045    |
| 0.035         | 26.0  | 3458  | 0.1130          | 0.2028   | 0.4055        | 0.4055           | nan                 | 0.4055         | 0.0            | 0.4055    |
| 0.0458        | 27.0  | 3591  | 0.1157          | 0.2216   | 0.4431        | 0.4431           | nan                 | 0.4431         | 0.0            | 0.4431    |
| 0.0347        | 28.0  | 3724  | 0.1115          | 0.2068   | 0.4136        | 0.4136           | nan                 | 0.4136         | 0.0            | 0.4136    |
| 0.0347        | 29.0  | 3857  | 0.1139          | 0.2050   | 0.4100        | 0.4100           | nan                 | 0.4100         | 0.0            | 0.4100    |
| 0.0355        | 30.0  | 3990  | 0.1175          | 0.1889   | 0.3778        | 0.3778           | nan                 | 0.3778         | 0.0            | 0.3778    |
| 0.0313        | 31.0  | 4123  | 0.1269          | 0.1859   | 0.3719        | 0.3719           | nan                 | 0.3719         | 0.0            | 0.3719    |
| 0.0348        | 32.0  | 4256  | 0.1143          | 0.1971   | 0.3943        | 0.3943           | nan                 | 0.3943         | 0.0            | 0.3943    |
| 0.0327        | 33.0  | 4389  | 0.1310          | 0.1982   | 0.3965        | 0.3965           | nan                 | 0.3965         | 0.0            | 0.3965    |
| 0.0318        | 34.0  | 4522  | 0.1321          | 0.1864   | 0.3728        | 0.3728           | nan                 | 0.3728         | 0.0            | 0.3728    |
| 0.0268        | 35.0  | 4655  | 0.1257          | 0.1803   | 0.3607        | 0.3607           | nan                 | 0.3607         | 0.0            | 0.3607    |
| 0.0323        | 36.0  | 4788  | 0.1344          | 0.1910   | 0.3819        | 0.3819           | nan                 | 0.3819         | 0.0            | 0.3819    |
| 0.0285        | 37.0  | 4921  | 0.1495          | 0.1763   | 0.3527        | 0.3527           | nan                 | 0.3527         | 0.0            | 0.3527    |
| 0.0266        | 38.0  | 5054  | 0.1369          | 0.1817   | 0.3634        | 0.3634           | nan                 | 0.3634         | 0.0            | 0.3634    |
| 0.0287        | 39.0  | 5187  | 0.1444          | 0.1754   | 0.3508        | 0.3508           | nan                 | 0.3508         | 0.0            | 0.3508    |
| 0.0295        | 40.0  | 5320  | 0.1579          | 0.1499   | 0.2997        | 0.2997           | nan                 | 0.2997         | 0.0            | 0.2997    |
| 0.0252        | 41.0  | 5453  | 0.1363          | 0.2191   | 0.4382        | 0.4382           | nan                 | 0.4382         | 0.0            | 0.4382    |
| 0.0261        | 42.0  | 5586  | 0.1516          | 0.1809   | 0.3617        | 0.3617           | nan                 | 0.3617         | 0.0            | 0.3617    |
| 0.027         | 43.0  | 5719  | 0.1512          | 0.1940   | 0.3881        | 0.3881           | nan                 | 0.3881         | 0.0            | 0.3881    |
| 0.0235        | 44.0  | 5852  | 0.1346          | 0.2012   | 0.4024        | 0.4024           | nan                 | 0.4024         | 0.0            | 0.4024    |
| 0.03          | 45.0  | 5985  | 0.1505          | 0.1995   | 0.3990        | 0.3990           | nan                 | 0.3990         | 0.0            | 0.3990    |
| 0.0252        | 46.0  | 6118  | 0.1621          | 0.1817   | 0.3634        | 0.3634           | nan                 | 0.3634         | 0.0            | 0.3634    |
| 0.0262        | 47.0  | 6251  | 0.1511          | 0.2024   | 0.4049        | 0.4049           | nan                 | 0.4049         | 0.0            | 0.4049    |
| 0.0236        | 48.0  | 6384  | 0.1726          | 0.1644   | 0.3289        | 0.3289           | nan                 | 0.3289         | 0.0            | 0.3289    |
| 0.0275        | 49.0  | 6517  | 0.1674          | 0.2094   | 0.4188        | 0.4188           | nan                 | 0.4188         | 0.0            | 0.4188    |
| 0.0243        | 50.0  | 6650  | 0.1556          | 0.1856   | 0.3712        | 0.3712           | nan                 | 0.3712         | 0.0            | 0.3712    |
| 0.0231        | 51.0  | 6783  | 0.1532          | 0.2085   | 0.4169        | 0.4169           | nan                 | 0.4169         | 0.0            | 0.4169    |
| 0.0218        | 52.0  | 6916  | 0.1676          | 0.1773   | 0.3547        | 0.3547           | nan                 | 0.3547         | 0.0            | 0.3547    |
| 0.0234        | 53.0  | 7049  | 0.1732          | 0.1883   | 0.3767        | 0.3767           | nan                 | 0.3767         | 0.0            | 0.3767    |
| 0.0222        | 54.0  | 7182  | 0.1648          | 0.1987   | 0.3974        | 0.3974           | nan                 | 0.3974         | 0.0            | 0.3974    |
| 0.0225        | 55.0  | 7315  | 0.1787          | 0.1743   | 0.3485        | 0.3485           | nan                 | 0.3485         | 0.0            | 0.3485    |
| 0.025         | 56.0  | 7448  | 0.1617          | 0.1900   | 0.3800        | 0.3800           | nan                 | 0.3800         | 0.0            | 0.3800    |
| 0.0207        | 57.0  | 7581  | 0.1796          | 0.1973   | 0.3945        | 0.3945           | nan                 | 0.3945         | 0.0            | 0.3945    |
| 0.0223        | 58.0  | 7714  | 0.2011          | 0.1814   | 0.3628        | 0.3628           | nan                 | 0.3628         | 0.0            | 0.3628    |
| 0.0223        | 59.0  | 7847  | 0.1752          | 0.1912   | 0.3824        | 0.3824           | nan                 | 0.3824         | 0.0            | 0.3824    |
| 0.0191        | 60.0  | 7980  | 0.1927          | 0.1880   | 0.3759        | 0.3759           | nan                 | 0.3759         | 0.0            | 0.3759    |
| 0.0229        | 61.0  | 8113  | 0.1875          | 0.1806   | 0.3612        | 0.3612           | nan                 | 0.3612         | 0.0            | 0.3612    |
| 0.0197        | 62.0  | 8246  | 0.1755          | 0.1869   | 0.3738        | 0.3738           | nan                 | 0.3738         | 0.0            | 0.3738    |
| 0.0243        | 63.0  | 8379  | 0.1804          | 0.1948   | 0.3896        | 0.3896           | nan                 | 0.3896         | 0.0            | 0.3896    |
| 0.0189        | 64.0  | 8512  | 0.1708          | 0.2015   | 0.4031        | 0.4031           | nan                 | 0.4031         | 0.0            | 0.4031    |
| 0.0247        | 65.0  | 8645  | 0.1991          | 0.1837   | 0.3673        | 0.3673           | nan                 | 0.3673         | 0.0            | 0.3673    |
| 0.0223        | 66.0  | 8778  | 0.1971          | 0.1879   | 0.3757        | 0.3757           | nan                 | 0.3757         | 0.0            | 0.3757    |
| 0.0221        | 67.0  | 8911  | 0.1901          | 0.1859   | 0.3718        | 0.3718           | nan                 | 0.3718         | 0.0            | 0.3718    |
| 0.0197        | 68.0  | 9044  | 0.1991          | 0.1896   | 0.3792        | 0.3792           | nan                 | 0.3792         | 0.0            | 0.3792    |
| 0.0233        | 69.0  | 9177  | 0.1917          | 0.1880   | 0.3759        | 0.3759           | nan                 | 0.3759         | 0.0            | 0.3759    |
| 0.0222        | 70.0  | 9310  | 0.2073          | 0.1825   | 0.3651        | 0.3651           | nan                 | 0.3651         | 0.0            | 0.3651    |
| 0.0209        | 71.0  | 9443  | 0.1894          | 0.1921   | 0.3841        | 0.3841           | nan                 | 0.3841         | 0.0            | 0.3841    |
| 0.0193        | 72.0  | 9576  | 0.2007          | 0.1893   | 0.3786        | 0.3786           | nan                 | 0.3786         | 0.0            | 0.3786    |
| 0.0208        | 73.0  | 9709  | 0.2073          | 0.1902   | 0.3804        | 0.3804           | nan                 | 0.3804         | 0.0            | 0.3804    |
| 0.0212        | 74.0  | 9842  | 0.2043          | 0.1887   | 0.3775        | 0.3775           | nan                 | 0.3775         | 0.0            | 0.3775    |
| 0.0199        | 75.0  | 9975  | 0.1971          | 0.1875   | 0.3749        | 0.3749           | nan                 | 0.3749         | 0.0            | 0.3749    |
| 0.02          | 75.19 | 10000 | 0.1935          | 0.1871   | 0.3741        | 0.3741           | nan                 | 0.3741         | 0.0            | 0.3741    |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3