File size: 1,320 Bytes
905d005
 
 
 
7156b18
 
905d005
 
 
 
 
 
 
 
 
 
 
7156b18
905d005
020a7dc
 
 
 
905d005
020a7dc
905d005
020a7dc
905d005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020a7dc
905d005
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: other
base_model: nvidia/mit-b5
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: ecc_segformerv1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ecc_segformerv1

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0351
- Mean Iou: 0.9171
- Mean Accuracy: 0.8041
- Overall Accuracy: 0.8041
- Accuracy Background: nan
- Accuracy Crack: 0.8041
- Iou Background: 0.0
- Iou Crack: 0.9171

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000



### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3